生物資源科学学位プログラム(博士前期課程)

専門基礎科目(理工情報生命学術院共通専門基盤科目)

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAH0311	生物資源科学研究法	1	1.0	1	春AB		古川 誠一, 田中 俊之, 田中樹, 清之, 俊母根, 山川, 泉, 守田, 泉, 小明彦, 清和, 小陽, 八明, 八明, 八明, 八明, 八明, 八明, 八明, 八明, 八明, 八明	生物資源科学の基盤を形成する学問体系を紹介するとともに、当該 関連分野の基本的な知識と様々な研究手法について学ぶ。生物資源 科学分野の最新、かつ、幅広い知識を系統的に学習することで、理 工情報生命学術院における研究課題の設定と計画の立案・遂行に必 要な基礎的な知識と能力の向上に役立つ。	For students of the Agro-biological Resources degree program, this will be the Agro-biological Resources course. The class format will be announced on manaba etc. オンライン(対面併用型)
0AH0312	国際生物資源科学研究 法(Introduction to International Agro- Bioresources Sciences and Technology)	1	1.0	1	春C	水1,2	首典別に 東男, 大本路 淳一 大本路 淳一 大本路 淳一 中東一 中東一 中東一 中東一 中東一 中東一 中東一 中東	生物資源科学の基盤を形成する学問体系を紹介するとともに、当該 関連分野の基本的な知識と様々な研究手法について学ぶ。国際的な 視座から生物資源科学分野の最新、かつ、幅広い知識を系統的に学 習することで、理工情報生命学術院における研究課題の設定と計画 の立案・遂行に必要な基礎的な知識と能力の向上に役立つ。授業は 英語で行う。	For students of the Agro-biological Resources degree program, this will be the Agro-biological Resources course. 対面(オンライン併用型)
OAH0313	農林生物学特別講義[1	1.0	1 • 2	秋B	集中	古川 誠一	農林生物学領域の植物育種学、作物学、蔬菜・花卉学、果樹生産利用学、動物資源生産学、発現・代謝ネットワーク制御学、エビジェネティクス、植物寄生蘭学、応用動物昆虫学、森林生態環境学、地域資源保全学、土壌環境化学などに関連する基本的な知識と様々な研究手法について学ぶ。当該領域の最新、かつ、幅広い知識を体系的に学習することで、理工情報生命学術院における研究課題の設定と計画の立案・遂行に必要な基礎的な知識と能力の向上に役立つ。	Agro-biological Resources degree
OAH0314	農林社会経済学特別講義【	1	1.0	1 • 2	秋C	集中	興梠 克久	農林社会経済学領域の生物資源経済学、国際資源開発経済学、農業経営学及び関連産業経営学、農村社会・農史学、森林資源経済学、森林資源社会学、、国際農林業開発学、地域森林資源開発学、生物園情報計測制御学、食品品質評価工学、国際生物資源循環学に関連する今日的な課題を整理し、拠りどころとすべき専門分野の学的な基礎について講述する。当該分野の最新、かつ、幅広い知識を系統的に学習することで、理工情報生命学術院における研究課題の設定と計画の立案・遂行に必要な基礎的な知識と能力の向上に役立つ。	Agro-biological Resources degree program, this will
OAH0315	生物環境工学特別講義Ⅰ	1	1.0	1 • 2	夏季休業中	集中	小林 幹佳	生物環境工学領域の環境コロイド界面工学、生物資源変換工学、流域保全工学、水利環境工学、生産基盤システム工学、生物生産機械学、保護地域管理学、食資源工学、生物材料化学、生物材料工学、農産食品プロセス工学に関連する基本的な知識と様々な研究手法について写った。生物資源の調和的・持続的利用と管理に係る工学的手法について国内外の研究成果を例に挙げながら紹介する。当該分野の最新、かつ、幅広い知識を系統的に学習することで、理工情報生命学術院における研究課題の設定と計画の立案・遂行に必要な基礎的な知識と能力の向上に役立つ。	Agro-biological Resources degree program, this will be the Agro- biological Resources course.

専門基礎科目(生命地球科学研究群共通科目)

寸门坐账	- 门基啶科日(生叩吧球科子研究群共通科日)												
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考				
0AN0201	研究コンプライアンス (生命科学)	1	1.0	1 • 2	春BC	集中	岡林 浩嗣	研究活動上のコンプライアンスをテーマとし、主に生命科学分野に 関連する利益相反、生物多様性条約、ならびに安全保障貿易管理の 各トピックスに加え、研究不正を避ける上で重要なポイントとして 注目されている2つのテーマ、統計と研究公正、ならびに画像処理 と研究公正についても講義を行う。研究コンプライアンスに関する 最新の知識・倫理観を習得することで、生命地球科学分野における 研究者、ならびに高度専門人にふさわしい研究能力の向上に役立 つ。	Agro-biological Resources degree program, this will be the Agro-				

0AN0202	英文論文の書き方(生命 科学)	1	1.0	1 • 2	秋AB	月5	上條 隆志, 木下 奈都子, テイラー デマー	・論文の構成(Structure of Scientific Papers) ・適切な表現方法(Language Conventions) ・図表の作り方(Preparing Tables and Figures) ・雑誌Editorとのコミュニケーション(Dealing with Editors) 研究成果を英語の論文としてまとめる研究力と専門知識を学び、国際的に通用するプレゼンテーション能力とコミュニケーション能力 を習得することで、生命地球科学分野における研究者、ならびに高度専門人にふさわしい研究能力の向上に役立つ。	Agro-biological Resources degree program, this will be the Agro- biological Resources course. Identical to OAQTO23.
---------	--------------------	---	-----	-------	-----	----	-------------------------------	--	---

専門基礎	科目(生物資源科学学位)	プログ	ラム)		T		I		I
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OANBOO5	国際農業科学研究法	1	1.0	1	春A	木1, 2	トファエル アハメド	この科目では、生物資源科学分野における国際的な農業科学の研究を推進し、新たな知見や技術を生み出すために必要な研究の方法論、並びに、論理的な思考能力を習得することを目的とする。講義ではまず、修士論文の執筆にも役立つ研究の論理的な構成について、その論理的な構成を明確にする方法論を学ぶ。これを基に、各自の修士論文の研究構成について考え、論理的な構成を明確について考え、論理的な構成と明確について考え、論立的な知の活用力とマネージメント能力を習得できる。また、授業は英語で行い、国際的なコミュニケーション能力も修得することができる。	英語で授業。
OANBOO6	応用国際農業科学研究 法	1	1.0	1	春B	木1,2	トファエル アハメド	この科目は、「国際農業科学研究法」に引き続いて開講する。生物 資源科学分野における国際的な農業科学の研究を推進し、新たな知 見や技術を生み出すために必要な研究の方法論、並びに、論理的な 思考能力の向上を目指す。自らの修士論文研究を題材として、その 育外目的、研究手法を明確にするとともに、新たな発見や技術開 発に結び付けるための論理的かつ効率的な研究法について考究し、 相互にディスカッションすることで、研究内容並びに各自の研究能 力のさらなる向上を図る。授業は英語で行い、国際的なコミュニ ケーション能力も修得することができる。	英語で授業。
OANBOO7	農林生物学特別講義[[1	1.0	1 · 2	秋C	集中	古川 誠一	農林生物学は食料生産の基盤となる研究領域である。本科目では、 作物や蔬菜・花卉、果樹などの育種や生産・管理、家畜の生産と管理、また森林の育成や保全について、さらには、これらに影響を与える動物、昆虫や微生物などの特性と制御について現在の課題と課題解決に向けた研究について実例を挙げながら解説する。これにより、農林生物学領域における幅広い問題意識と共に、当該領域における専門基礎知識や基礎的な研究の手法について系統的に習得することができる。	
OANBOO8	農林社会経済学特別講義Ⅱ	1	1.0	1 • 2	秋C	集中	首藤 久人	農林社会経済学は、生物資源に関連する課題を社会学ならびに経済学の手法により考究する研究領域である。本科目では、農業と林業の産業活動にかかる経済学、農林産物のアグリビジネス、具体的には貿易や流通、フード・チェーン等にかかる経済学について、現在の課題と課題解決に向けた研究について実例を挙げながら解説する。さらには、農村史や農村社会学、農業・農村・森林が関わる環境保全と資源循環型農林業、途上国の整理し、考究の拠りどころと支援等にかかる政策に関しても課題を受け、農林社会経済学領域における幅広い問題意識と共に、当該領域における専門基礎知識や基礎的な研究の手法について系統的に習得することができる。	
OANBOO9	生物環境工学特別講義	1	1.0	1 • 2	秋C	集中	トファエル アハメド	生物環境工学特別講義IIでは、農業土木学、生物生産機械・施設工学、森林・林産工学の研究領域に関する研究動向や現在の課題と課題解決に向けた研究について実例を挙げながら解説する。また、物環境工学分野における、生物資源の調和的・持続的利用と管理に係る工学的手法と技術体系について、国内外の最新の研究成果を含めながら解説する。これにより、生物環境工学領域における幅広い問題意識と共に、当該領域における専門基礎知識や基礎的な研究の手法について系統的に習得することができる。	対面

OANB010	応用生命化学特別講義	1	1.0	1 • 2	秋C	集中	野村 暢彦	応用生化学分野の研究動向、現状の問題点とその解決策を解説する。応用生物化学の分野における幅広い課題を認識する。また、基礎的な研究方法とこの分野の研究者・技術者としてのキャリアについて学ぶ。	
0ANB012	Debating Current Topics in Life Science and Engineering	1	2. 0	1	秋AB	水5, 6	粉川 美路,前田 義昌,渡邉 和男, 辻村 真貴,内海 真生,野村 名可男	バイオシステム学領域に関連する、生命産業、再生医療、遺伝子多様性、微生物応用、食品産業などに関連する最近の学術界や産業界におけるトピックスと関連する専門基礎知識について概説する。また、バイオシステム学領域に関連する産業に携わる研究者や技術必断備えるべき倫理的課題について英語によって論議し、実社会が要な討論能力を涵養する。この授業を通じて、知識や技術の論理的な活用力、倫理観を習得できる。また、国際的なコミュニケーション能力も修得することができる。	対面(オンライン併用
OANBO13	Metabolomics	1	1.0	1 • 2	秋C	集中	ロンバルド ファ ビエン クロード レノー, 松倉 千 昭, Pierre PÉ TRIACQ	ポストゲノミクスの研究において、メタボロミクスは新たなオミクスのツールとして、ホワイトバイオテクノロジーやグリーンパイオテクノロジー、栄養学、植物生理学、微生物学などの多くの生物関連分野で注目されている。メタボロミクスは、生物において特定の表現型を特徴付ける代謝プロファイルの総合的な研究に基づいている。この科目では、生物学におけるメタボロミクスを用いた研究手法について概説し、メタボロミクスを行う上での様々な技術を紹介する。講義は英語で行う。	OAVC208と同一。
OANBO14	Intercultural Communication	1	2.0	1.2	春AB	水2,3	ブザス ディアナ ミハエラ	"Culture is to humans as water is to fish". Even though we cannot function outside a culture, culture has intangible aspects preventing us from realizing what our own medium is. This course will take us on a journey to elevate many of those unspoken norms and basic assumptions of own and other culture into consciousness. A fascinating aspect of crossing cultures is the unique way it can become informing and open up access to creative problem solving. This can lead to personal and organizational growth. Nevertheless, communication between individuals from different cultures can also lead to a spectrum of negative reactions, from slight emotional discomfort all to way to conflict. The course will build theoretic knowledge, it is highly interactive, experiential and reflection-based.	英語で授業。 対面
0ANB015	統計解析演習	2	1.0	1	春C	集中	首藤 久人	:線形回帰モデルにおける各種検定方法の演習・習得を通じて、対応のある(ない)標本の母平均の差の検定・分散分析、多重比較など生物資源科学のための統計分析に対する理解を深める。	対面
0ANB801	基礎植物バイオテクノロジー論	1	2. 0	1 · 2	春AB	金2,3	营谷 純子,高谷 直樹,草野 都,江 面 浩,青柳 秀紀, 山田 小須弥,松倉 千昭,吉田 滋樹, 木下 奈都子	地縁技術と先端技術を結ぶインターフェースとして必要な基盤的パイオテクノロジーに関する知識の習得を目的とする. 植物, 食品加工などに関連したパイオテクノロジーの話題を各分野の専門家が解説する.	大学院連携プログラム
0ANB803	Introduction to Sustainable Agriculture in Rural Areas	1	2. 0	1 • 2	秋AB	水3,4	トファエル アハメド	This course provides concepts and practices of sustainable agriculture in rural areas covering soil fertility, chemical application systems, site-specific management systems from pre-harvest to post-harvest stages in production. Furthermore, the participatory rural appraisal for sustainable agricultural practices, supply and value chain analysis in agribusiness, ICT, IoT, and Big Data topics are included in discussion and course project.	Room: F106 英語で授業。 オンライン(同時双方 向型)
OANB804	Concept of Sustainability Index	1	2. 0	1 • 2	秋AB	木3, 4	トファエル アハメド	is included to develop the indices such as Maximum	Room: F106。JICA開発 大学院連携プログラム 科目 英語で授業。 英語で授業。 オンライン (同時双方 向型)

専門科目	_領域共通(生物資源科学 		ログラ	ム) 標準					
科目番号	科目名	授業方法	単位数	履修年次	実施学期	曜時限	担当教員	授業概要	備考
OANB201	農業科学演習IS	2	2. 0	1	春ABC	応談	石井 敦 上條 隆 志,浅野 眞希,杉 本 卓也	農業科学関連分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深め、研究テーマに関する研究動向を把握するとともに、その研究成果を適切に評価する能力を養う。参考書・参考資料等については、農業科学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進める。 (1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介と討論	研究室
OANB202	農業科学演習IF	2	2. 0	1	秋ABC	応談	石井 敦 上條 隆 志,浅野 眞希,杉 本 卓也	農業科学の関連分野に関する優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、その討論を通して科学的・論理的思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。参考書・参考資料等については、農業科学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	研究室
OANB203	農業科学演習IIS	2	2. 0	2	春ABC	応談	石井 敦 上條 隆 志. 浅野 眞希, 杉 本 卓也	農業科学関連分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深めるとともに、その研究成果を適切に評価し、自らの視点で科学的・論理的に考察する能力を養う。参考書・参考資料等については、農業科学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進める。 (1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介	研究室
OANB204	農業科学演習IIF	2	2. 0	2	秋ABC	応談	石井 敦,上條 隆 志,浅野 眞希,杉 本 卓也	農業科学の関連分野に関する優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、その討論を通して科学的・論理の思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。参考書・参考資料等については、農業科学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進める。(1) 研究テーマに関する討論により、論文内容の理解を深める。(2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	研究室
OANB205	農業科学特別研究IS	3	3. 0	1	春ABC	応談	石井 敦, 上條 隆 志, 浅野 眞希, 杉 本 卓也	農業科学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的に報告を行い、計論を通じて体系的な思考力、科学の・論理的な考察力を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 春学期における研究課題の設定、(2) 春学期における研究計画の立案、(3) 春学期における研究材料の収集、(4) 春学期における実験方法の検討、(5) 春学期における実験が活る実験データの収集、(7) 春学期における実験データの収集、(7) 春学期における研究析法、(8) 春学期における研究結果の考察、(9) 春学期における研究	研究室
OANB2O6	農業科学特別研究IF	3	3. 0	1	秋ABC	応談	石井 敦, 上條 隆志, 浅野 眞希, 杉本 卓也	農業科学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的に報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。また、研究のに必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 秋学期における研究課題の設定、(2) 秋学期における研究計画の立案、(3) 秋学期における研究材料の収集、(4) 秋学期における実験方法の検討、(5) 秋学期における実験・調査の実施、(6) 秋学期におけるデータ解析法、(8) 秋学期における研究結果の考察、(9) 秋学期における研究推りの報告、(10) 秋学期における研究結構が表別で表別における研究結果の考察、(11) 秋学期における研究	研究室

OANB207	農業科学特別研究IIS	3	3. 0	2	春ABC	応談	石井 敦,上條 隆 志,浅野 眞希,杉	農業科学に関する自らの研究課題に取り組み、定期的に研究の進捗 状況に関する報告を行い、討論を通じて体系的な思考力、科学的・ 論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を 学ぶ。また修士論文の中間発表を行うことで、プレゼンテーション 技法を身につける。授業は、下記の計画で進める。また、研究者に 必須である研究倫理教育についても、研究の進行に合わせ適宜行 う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析 法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学研究 のまとめ方、(7) 修士論文の中間発表資料の作成、(8) プレゼンテー ション技法、(9) 修士論文の中間発表	研究室
OANB208	農業科学特別研究IIF	3	3. 0	2	秋ABC	応談	石井 敦,上條 隆志,浅野 眞希,杉本 卓也	農業科学に関する自らの研究課題に取り組み、定期的に研究の進捗 状況に関する報告を行い、討論を通じて体系的な思考力、科学的・ 論理的な考察力を修得する。研究成果のまとめ方、 一切発表することで、ブレゼンテーション技法を身につける。授業 は、下記の計画で進める。また、研究者に必須である研究倫理教育 についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析 法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文 の書き方、(7) 修士論文作成、(8) プレゼンテーション技法、(9) 修士論文発表会での口頭発表	研究室
OANB209	農業科学演習IIF (春)	2	2. 0	2	春ABC	応談	石井 敦,上條 隆	農業科学の関連分野に関する優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、その討論を通して科学的・論理の思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。参考書・参考資料等については、農業科学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進の理解を深める。(1) 研究テーマに関する討論により、論文内容の理解を深める。(2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	
OANB210	農業科学特別研究IIF (春)	1	3. 0	2	春ABC	応談		農業科学に関する自らの研究課題に取り組み、定期的に研究の進捗 状況に関する報告を行い、討論を通じて体系的な思考力、科学的・ 論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を 学び、研究成果を修士論文としてまとめる。また修士論文発表会で 口頭発表することで、プレゼンテーション技法を身につける。授業 は、下記の計画で進める。また、研究者に必須である研究倫理教育 についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析 法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文 の書き方、(7) 修士論文作成、(8) プレゼンテーション技法、(9) 修士論文発表会での口頭発表	を履修したものは本科

専門科目_農林生物学領域(生物資源科学学位プログラム)

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OANB301	農林生物学演習IS	2	2. 0	1	春ABC	応談	上條 隆志,草野	農林生物学に関連する分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深め、研究テーマに関する研究動向を把握すると共に、研究成果を適切に評価する能力を養う。授業は、下記の計画で進める。授業は、下記の計画で進める。(1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介と討論	研究室

OANB302	農林生物学演習IF	2	2.0	1	秋ABC	応談	上都純山泉達福デラ岡之部タ盛木司彦野ルク作樹井南條、子路康之田ィ古洋浅淳一夫下夢、高中ドロ本藤哲川條、学子路康之田・古洋浅淳一夫下夢、高中ドロ本藤哲川志・史倉子、源田也・誠浅眞ピ寧田都古真子・ア・介泰田則草、千岡清吉ブハー野希一加清子。澤理ロエノ谷成端野谷昭根野晃・又工吉敦阿藤和藤田子、バン一尚松純野谷昭根野晃・又工吉敦阿藤、滿、バン一尚松純	農林生物学に関連する分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、各自が取り組む修士論文の研究課題との関連性についても議論を深める。授業は、下記の計画で進める。(1) 研究テーマに関する討論により、論文内容の理解を深める、(2) 論文として求められる必須要素の理解、(3) 紹介論文の適切な評価	研究室
OANB303	農林生物学演習IIS	2	2.0	2	春ABC	応談	上都純山泉達福デラ岡之部タ盛木司彦野ルク作樹井南條、学子路康之田ィ古洋浅淳一夫下夢高中ドロ本藤哲川隆、学子路康之田・古洋浅淳一夫下夢高中ドロ本藤哲川志史倉子源田也。誠浅眞ピ寧田都古真子ァ、介泰田則草菅田清吉ブハ一野希一加清天澤理ロエノ谷成端野谷昭根野晃ザエラの藤和藏由子バン一尚松純明の東京の東京を開展を表現、東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の東	農林生物学関連分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深めるとともに、その研究成果を適切に評価し、自らの視点で科学的・論理的に考察する能力を養う。また、各自が取り組む修士論文の研究課題との関連性について、実験手法や結果と考察について読み込こんだ上で議論を深める。授業は、下記の計画で進める。 (1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2)研究テーマに関する研究動向の把握、(3)論文紹介	研究室

OANB304	農林生物学演習IIF	2	2. 0	2	秋ABC	応談	上都純山泉達福デラ岡之部タ盛木司彦野ルク作樹井南條、柴子路康之田イ古洋浅淳一夫下夢、高中ドロ本藤哲川條、柴子路康之田イ古洋浅淳一夫下夢、高中ドロ本藤哲川志、史倉子、源田也、誠浅眞ピ寧田都古真子・ア・介泰田則草菅千岡清吉ブハ一野希一加清・子澤理ロビレ谷成端野谷昭根野晃・又工古敦阿藤和滿蔵由子、バン一尚松純野谷昭根野晃・又工古敦阿藤和滿本由子、バン一尚松純	農林生物学の関連分野に関する優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する計論を通して科学的・論理的思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。授業は、下記の計画で進める。 (1) 研究テーマに関する計論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	研究室
OANB305	農林生物学特別研究IS	3	3.0	1	春ABC	応談	上都純山泉達福デラ岡之寧下司彦野ルク作樹井南盛條柴子路康之田イ古洋浅川奈夢高中ドロ本藤哲川夫隆博松恵承津直ア川輔野田都瀬山聡フド亮田哉和草菅千岡清吉ブバー野希和藏澤理ロエノ谷成端加野谷昭根野晃・びエ青敦王木滿由子・バンー尚松純藤野谷昭根野晃・びエ吉敦王木滿由子・バンー尚松純藤	農林生物学に関する研究課題を設定し、その研究課題を解決すざび、 がの専門的な研究法や実験法、データのまとめ方や解析法を学び、 研究計画を立案する。その計画に沿って実際に研究を遂行し、取得 した実験データの解析を行う。研究の進捗状況に関して定期的に寄 を修得する。授業は、下記の計画で進める。またの研究者行う。 (1) 春学期における研究課題の設定、(2) 春学期における研究計画の立案、(3) 春学期における研究材料の収集、(4) 春学期における研究計画の立案、(3) 春学期における研究材料の収集、(4) 春学期における実験データの収集、(7) 春学期におけるデータ解析 法、(8) 春学期における研究結果の考察、(9) 春学期における研究 進捗状況の報告	研究室
OANB306	農林生物学特別研究IF	3	3.0	1	秋ABC	応談	上都純山泉達福デラ岡之寧下司彦野ルク作樹井南盛條柴子路康之田イ古洋浅川奈夢高中ドロ本藤哲川夫隆博松恵承津直ア川輔野田都瀬山聡フ一亮田哉和志史倉子源田也、誠浅眞清子古真子ド介泰田則、草菅千岡清晃ザエン野希和藏澤理ロエノ谷成端加野谷昭根野晃ザエ吉敦王木滿由子、バン一尚松純藤野谷昭根野晃、工吉敦王木滿由子、バン一尚松純藤	農林生物学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的内部を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行うので、(1) 秋学期における研究課題の設定、(2) 秋学期における研究計画の立案、(3) 秋学期における研究料の収集、(4) 秋学期における実験方法の検討、(5) 秋学期における実験・調査の実施、(6) 秋学期における実験データの収集、(7) 秋学期におけるデタ解析の表、(8) 秋学期における研究結果の考察、(9) 秋学期における研究	研究室

OANB307	農林生物学特別研究IIS	3	3. 0	2	春ABC	応談	上都純山泉達福デラ岡之寧下司彦野ルク作樹田南盛、柴子路康之田イ古洋浅川奈夢、高中ドロ本松泰川夫隆博松惠承津直ア川輔野田都瀬山聡フー亮井成和志史倉子源田也、誠浅眞清子古真子アド介哲田則、前天中、一野希和藏澤 理ロエノ谷哉端加野谷昭根野見、又工吉敦王木滿由子、バン一尚藤純藤野谷昭根野見、又工吉敦王木滿由子、バン一尚藤純藤	農林生物学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学ぶ。また修士論文の中間発表を行うことで、プレゼンテーション技法を負につける。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法 (4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学研究のまとめ方、(7) 修士論文中間発表資料の作成、(8) プレゼンテーション技法、(9) 修士論文の中間発表	研究室
OANB308	農林生物学特別研究IIF	3	3. 0	2	秋ABC	応談	上都純山泉達福デラ岡之寧下司彦野ルク作樹井南盛ピ、柴子路康之田イ古洋浅川奈夢高中ドロ本藤哲川夫の隆博松恵承津直ナ川輔野田都瀬山聡フー亮田哉和阿一志史倉子源田也、誠浅眞清子古真子アド介泰田則部草青千岡清吉ザハー張熱瀬 理ロエノ谷成端加淳草帝田棣野晃・江王敦王木滿由子・バン一尚松純藤一野谷昭根野晃・スエ吉敦王木滿由子・バン一尚松純藤一	農林生物学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文性成素会としてまとめる。また修士論文としてまとめる。また修士論文としてまとめる。また、研究者に必須である研究倫理後は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文の書き方、(7) 修士論文作成、(8) プレゼンテーション技法、(9) 修士論文発表会での口頭発表	研究室

OANB309	農林生物学演習IIF (春)	2	2. 0	2	春ABC	応談	上都純松恵承津デラ岡之部タ盛藏奈彦野ルク作樹井南條柴子倉子源田イ古洋浅淳一夫滿都高中ドロ本藤哲川條柴子倉子源田イ古洋浅淳一夫滿都高中ドロ本藤哲川志・史田昭根野晃・誠浅眞ピ寧田夢瀬真子ァ・介泰田則草菅直山泉達ブリハ吉敦原・満末古理ロエノ谷成端野谷也路康之ザハニ敦阿藤和下澤子ンノー尚松純野谷也路康之ガエ吉敦阿藤和下澤子ンノー尚松純	農林生物学の関連分野に関する優れた著書や学術論文等を収集・講 研 読し、その中から適切な文献を選び論文紹介を行い、そのテーマに 順関する討論を通してその研究成果を適切に評価する能力を養う。ま た、その討論を通して科学的・論理的思考能力を身見・考案する。 浸素 は、下記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察 し、新たな研究課題や研究手法を発見・考案する。	多したものは本科目を
OANB310	農林生物学特別研究IIF (春)	3	3.0	2	春ABC	応談	野浩野谷彦村子源田晃ナ誠浅眞清子古真衣ンエノ谷成端村上都純松憲岡清直ブミー野希和藏澤理野パンー尚松純港條柴子倉司根野也ザハ吉敦王木滿由子中ルク作樹井南二隆博津干山泉達津スエ岡之。寧下司彦津聡・口本藤哲川江志史村昭路康之田デ,洋浅川奈夢高田子アー亮田哉和面草菅義田恵承福吉ア川		R究室。特別研究ⅡF を履修したものは本科 自を履修できない
OANB318	植物寄生菌学特論	1	2.0	1 • 2	春AB	木5, 6	岡根 泉	本科目では、植物に寄生・共生する薗類の系統分類、ならびにその 生活環、他の生物との相互作用、寄生性の分化、植物に対する病原 力などの生理、生態に関する専門的知識について、これまでに実際 に行ってきた研究の成果や失敗、また、未解決の課題を紹介しなが ら講述する。また、受講生は植物寄生菌に関するテーマを選定し、 そのテーマについて調べて学んだ内容をわかりやすく簡潔にまとめ て発表を行い、討論を通してさらに理解を深める。	
OANB320	応用動物昆虫学特論	1	2. 0	1 • 2	春AB	火5, 6	古川 誠一	応用動物昆虫学の研究内容を理解し、応用分野で活用できることを 目標にする。生物資源保護、環境保全、人間生活の維持に関わる寄 生性昆虫、捕食性昆虫などに関する周辺領域をも含めた関連分野で の最近の研究成果と社会的ニーズについて講述し、これからの時代 の害虫等の防除・管理、有用昆虫の利用に関する研究の指針とす る。	

OANB322	森林生態環境学特論	1	2. 0	1 • 2	通年	応談	上條 隆志, 川田清和	森林を中心とした陸域生態系の組成・構造・機能・生物多様性保全 に関する理論および解析方法を論じるとともに、森林生態環境学の 最新の研究成果をもとに具体的に解説する。森林生態環境学分野に おける、専門的知識の習得、調査方法、得られた結果の解析とまと め方、結果に基づく考察と論議の進め方について習得する。	
0ANE321	植生地理学	1	1.0	1 • 2	通年	応談	上條 隆志, 川田清和	生物圏の主要構成要素であり、生物資源の供給源である植生に関して、生物地理学・生態学・生物多様性の面から解説する。特に日本を含む東アジアの森林に焦点を当てて解説する。	
OANE361	地域資源保全学特論	1	2. 0	1 • 2	通年	応談	清野 達之, 津田吉晃	森林の保全及び持続的利用について生態学的な見地から講義を行う。我が国や世界の森林などを事例として生態学的手法を用いた研究について最新の研究成果をもとに具体的に解説し討論を行う。	授業は、講義、ゼミ、 実習形式で行う。人数 制限をする場合があ る。状況によってはオ ンライン対応で実施。
OANE363	資源生物管理学	1	2.0	1 • 2	秋AB	応談	清野 達之, 津田吉晃	森林の持続的な管理と利用について、その基礎となる生態学を中心 とした自然科学的な視点から考察するとともに、これに関連した研 究の動向について解説する。各講義の回ごとにレポート課題を設定 し、その内容についての発表と議論を基にした講義を行なう。	日程と講義方法などは manabaやTwinsなどの 掲示を確認すること。 オンライン(同時双方 向型)
0ANB323	発現・代謝ネットワー ク制御学特論	1	2.0	1 - 2	通年	応談	草野 都	ゲノム・エピゲノム情報にプログラムされている植物の生命現象について、それらを制御する分子遺伝学、生理学、細胞生物学的観点から解説する。またポストゲノム科学の一つであるメタボロミクスについて、定義と概要を解説する。メタボロミクスで用いられる機器分析法について、その原理とデータ処理方法を概説し、バイオインフォマティクス手法についても紹介する。受講生による関連研究分野発表および質疑応答によってコミュニケーション能力や専門性を向上させるとともに、今後のポストゲノム科学研究を行う上で必要な先端的研究動向を理解し、自身の研究を独自に展開するための知識の向上をめざす。	
0ANB325	エピジェネティクス特論	1	2. 0	1 • 2	通年	応談	ブザス ディアナ ミハエラ	エピジェネティクスは、DNA配列以外の分子に含まれる生物学的遺伝の研究の分野として広く定義することができる。エピジェネティックな情報は、遺伝情報と同じように表現型に大きな影響を与る可能性があるが、DNA配列の変化とは異なり、エピジェネティックな変化は可逆的であり、環境に応じて変化する。この科目では、さまざまな真核生物について、エビジェネティック現象を取り上げて講義を行う。この科目を受講することで、遺伝的機構とエピジェネティック機構の違いについて明確に理解できると共に、遺伝子制御のメカニズムに関する専門知識を習得できる。	
OANB326	土壌環境化学特論	1	2. 0	1 • 2	秋B	集中	浅野 眞希	土壌科学の基礎的事項を踏まえて、さらに発展的な基礎的土壌生成 過程などについて理解を深め、ペドロジーを系統的に学ぶ。生物圏 を支える土壌環境の化学的側面を講述する。最近の地球環境変化や 従来の土壌管理・利用技術が森林および耕地生態系に及ぼす影響に ついて、環境と生産の調和という視点から土壌環境を考える。下記 の項目に沿って授業を進める。 (1) 土壌圏とは、(2) 森林生態系と土壌、(3) 草原生態系と土 壌、(4) 耕地生態系と土壌、(5) 都市生態系と土壌、(6) 地球温暖 化と土壌、(7) 砂漠化と土壌、(8) 環境汚染と土壌、(9) 土壌多様 性の保全	
OANE324	土壌生成論	1	2. 0	1 • 2	夏季休業中	集中	浅野 眞希	土壌を岩石・気候・生物・地形・時間の間に生じる相互作用によって地表に生成された歴史的自然体としてとらえ、土壌の生成過程・性質・機能の特徴を講述し、さらに土壌生成分類に関する諸概念について論じる.	
0ANB327	生物圈資源科学特論	1	2. 0	1 • 2	通年	応談	松井 哲哉, 谷 尚 樹, 藤田 泰成, 作 本 亮介	生物圏資源科学に関連する植物環境応答学、生産昆虫機能利用学、 国際食料生産開発学、植生・気候変動影響学、森林微生物機能解析 学および熱帯林業科学に関連する基本的な知識と各学問分野におけ る様々な研究手法についてその原理と共に学ぶ。また、当該分野の 最新のトピックスについても紹介する。生物圏資源科学に関連する 幅広い知識を系統的に学習することで、農林生物学領域における研 究課題の設定と計画の立案・遂行に必要な基礎的な知識と能力を習 得する。	連携大学院方式に関連する学生のみ受講可能
OANB328	生物生産遺伝科学特論	1	2. 0	1 • 2	春A 春B		松倉 千昭, 菅谷 純子, 福田 直也, 吉岡 洋輔, 浅野 敦之	生物生産・遺伝科学分野の植物育種学、作物学、蔬菜・花卉学、果 樹生産利用学、動物資源生産学、植物ゲノム科学に関する最新の知 見を具体的な研究事例や産業利用の動向の紹介を交えて講述する。 また、議論を通して、当該分野が抱える現代的諸課題について理解 を深め、将来的に課題解決を図るための知識を学修する。	

専門科目	_農林社会経済学領域(生 	物資源	科学学		グラム)				
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OANB401	農林社会経済学演習IS	2	2. 0	1	春ABC	応談	首藤 久人,氏家 清和,興梠 克久, 飯山 みゆき,石崎 涼子,澤田 守	農林社会経済学に関連する分野の優れた著書や学術論文等を収集・ 講読し、既存研究の内容を理解し専門知識を深め、研究テーマに関 する研究動向を把握すると共に、研究成果を適切に評価する能力を 養う。授業は、下記の計画で進める。 (1) 研究テーマに関連した優れた著書や学術論文等の収集・講 読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介と討論	研究室
OANB402	農林社会経済学演習IF	2	2. 0	1	秋ABC	応談	首藤 久人,氏家 清和,興梠克久, 飯山 みゆき,石崎 涼子,澤田 守	講読し、その中から適切な文献を選び論文紹介を行い、そのテーマ に関する討論を通してその研究成果を適切に評価する能力を養う。 また、各自が取り組む修士論文の研究課題との関連性についても議 論を深める。授業は、下記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める、	研究室
OANB403	農林社会経済学演習IIS	2	2. 0	2	春ABC	応談	首藤 久人、氏家 清和, 興梠 克久, 飯山 みゆき, 石崎 涼子, 澤田 守	農林社会経済学関連分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深めるとともに、その研究成果を適切に評価し、自らの視点で科学的・論理的に考察する能力を養う。また、各自が取り組む修士論文の研究課題との関連性について、実験手法や結果と考察について読み込こんだ上で議論を深める。授業は、下記の計画で進める。(1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介	研究室
OANB404	農林社会経済学演習IIF	2	2. 0	2	秋ABC	応談	首藤 久人 氏家 清和, 興梠 克久, 飯山 みゆき, 石崎 涼子, 澤田 守	農林社会経済学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する計論を通してその研究成果を適切に評価する能力を養う。また、その計論を通して科学的・論理的思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。授業は、下記の計画で進める。 (1) 研究テーマに関する計論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	研究室
OANB405	農林社会経済学特別研 究IS	3	3.0	1	春ABC	応談	首藤 久人, 氏家 清和, 典梠 克久, 衝山, みゆき, 石崎 涼子, 澤田 守	農林社会経済学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的に報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(① 春学期における研究課題の設定、(2) 春学期における研究計画の立案、(3) 春学期における研究計画の立案、(3) 春学期における研究計画の立案、(4) 春学期における研究計画の立案、(6) 春学期における実験・調査の実施、(6) 春学期における実験データの収集、(7) 春学期におけるデータ解析法、(8) 春学期における研究結果の考察、(9) 春学期における研究	laboratory
OANB406	農林社会経済学特別研 究IF	3	3. 0	1	秋ABC	応談	首藤 久人 氏家 清和, 興梠 克久, 飯山 みゆき, 石崎 涼子, 澤田 守	農林社会経済学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的に報告を行い、討論を通じて体系的な思考力、研究の進行に合わせ適宜行う。領である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 秋学期における研究課題の設定、(2) 秋学期における研究計画の立案、(3) 秋学期における研究料の収集、(4) 秋学期における実験方法の検討、(5) 秋学期における実験・調査の実施、(6) 秋学期における実験データの収集、(7) 秋学期におけるデータ解析法、(8) 秋学期における研究結果の考察、(9) 秋学期における研究進捗状況の報告	研究室

OANB407	農林社会経済学特別研 究IIS	3	3.0	2	春ABC	応談	首藤 久人 氏家 清和, 興梠 克久, 飯山 みゆき, 石崎 涼子, 澤田 守	農林社会経済学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学ぶ。また修士論文の中間発表を行うことで、プレゼンテーション技法を身につける。授業は、下記の計画で進める。まて、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学研究のまとめ方、(7) 修士論文中間発表資料の作成、(8) プレゼンテーション技法、(9) 修士論文の中間発表	laboratory
OANB408	農林社会経済学特別研究!!F	3	3. 0	2	秋ABC	応談	首藤 久人,氏家 清和,興梠 克久, 飯山 みゆき,石崎 涼子,澤田 守	農林社会経済学に関する自らの研究課題に取り組み、定期的に研究 の進捗状況に関する報告を行い、計論を通じて体系的な思考力、科 学的・論理的な考察力を修得する。研究成果のまとめ方。論文作成 方法を学び、研究成果を修士論文としてまとめる。また修士論文発 表会で口頭発表することで、プレゼンテーション技法を身につけ る。授業は、下記の計画で進める。また、研究者に必須である研究 倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析 法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文 の書き方、(7) 修士論文作成、(8) プレゼンテーション技法、(9) 修士論文発表会での口頭発表	研究室
OANB409	農林社会経済学演習IIF (春)	2	2. 0	2	春ABC	応談	首藤 久人,氏家 清和,興梠 克久, 飯山 みゆき,石崎 涼子,澤田 守	農林社会経済学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、その討論を通して科学的・論理的思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。授業は、下記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	研究室。演習IFを履修したものは本科目を 履修できない
OANB410	農林社会経済学特別研 究IIF(春)	3	3. 0	2	春ABC	応談	立花 敏,飯山 み	農林社会経済学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学び、研究成果を修士論文としてまとめる。また修士論文を表会で口頭発表することで、ブレゼンテーション技法を身につける。授業は、下記の計画で進める。また、研究者に必須である研究(1)実験・調査の実施、(2)実験データの収集、(3)データ解析法、(4)研究結果の考察、(5)研究進捗状況の報告、(6)科学論文の書き方、(7)修士論文作成、(8)プレゼンテーション技法、(9)修士論文発表会での口頭発表	を履修したものは本科
OANB412	食料経済・農業発展論	1	2. 0	1 - 2	秋AB	水7,8	首藤 久人	フード・セキュリティの概念および経済発展のプロセスにおける農業部門の役割と食料市場の特徴についての理解を深め、その背景にある家計などの個別主体の行動やコミュニティの機能に関する経済学的分析方法について論じる。また、日本の機験の位置づけやその適用可能性について検討する。この科目では、日本の農業発展経路と食料経済成長の経験について理解することを修学の目標とする。授業では、Household Model、Ricardian Trap、Structural Change、Common Property Resourcesなど関連する最新のトピックスを取り上げ紹介する。食料経済・農業発展論に関連する幅広い知識を系統的に学習することで、研究課題の設定と計画の立案・遂行に必要な基礎的な知識と能力を習得する。	Study Program 対面(オンライン併用

OANB413	国際資源開発経済学特論	1	2. 0	1 • 2	春AB	月7,8	首藤 久人	資源経済学と開発経済学の観点から、国内外における農家行動の諸問題を理論的および実証的に考察する。食料・農業・環境における幅広い視野と国際資源開発経済学の専門性を通して、実証研究のための基礎知識と分析方法を習得することをこの科目の修学目標とする。国内外の農業生産主体の行動に関連した国際資源開発経済学の基礎的な専門知識を教授するとともに、この分野の先端研究を紹介し、最先端の研究成果を国内及び国際全で報告、学術誌への成果公表を目指す。講義では、農林水産物生産を主要な産業としている地域経済を対象に、経済発展・地域開発・貧困削減・環境保全問題等、経済発展のための諸課題を取り上げ、これらの課題を資源開発経済学的観点から議論する。	
OANB414	国際農村開発論	1	2. 0	1 • 2	秋BC	火7,8	首藤 久人	資源経済学と開発経済学の観点から、農村地域開発の諸問題を理論的および実証的に考察する。この科目では、農村開発の背景となる理論や実証研究事例を教授することにり、高い専門的分析視点と学識を兼ね備えた研究者および幅広い専門知識を持ち社会貢献する高度職業人の養成を目指す。下記の項目に沿って授業を進める。・農村地域における諸制度に関する経済学的理論・実証分析アプローチについて、テキストと研究論文の講読により理解を深める。・農村開発のためのプログラムデザインとその評価手法について理解を深める。	
OANB415	農業経営学及び関連産 業経営学特論	1	2. 0	1 • 2	秋AB	木7,8	氏家 清和	経営学や経済学、計量経済学等を基礎として、農業経営やアグリビジネスならびに消費者の動向を分析し理解するための理論的枠組みや実証の具体的方法について理解を深める。農業経営学及び関連産業経営学について表する有用な手法である各種理論や分析手法について、それらを身につけ、自身の分析視座として応用して、自律的に研究に取り組むことができる能力の洒養を授業の達成目標とする。授業では、経済学、経営学、統計学が析およびモデル分析などの手法を更に深める。授業は、統計学ならびに計量経済学についての基礎的知識を前提として進める。	
OANB416	地域農業発展論	1	2. 0	1 • 2	春AB	木7,8	氏家 清和	経営学や経済学、計量経済学等を基礎として、農業経営やアグリビジネスならびに消費者の動向を分析し理解するための理論的枠組みや実証の具体的方法について理解を深める。地域農業について考察する有用な手法である離散選択モデルについて、背景理論や分析手法を身につけ、自身で実際に分析できるようになることを授業の達成目標とする。授業では、経済学、経営学、統計分析およびモデル分析などの手法を学ぶ。授業は、統計学ならびに計量経済学についての基礎的知識を前提として進める。	
OANB417	森林資源経済学特論	1	2. 0	1 - 2	春AB	木5,6	興梠 克久	国際的視野に立って森林・林業・木材産業および地域社会を理解 し、関係する問題の所在とその解決に向けた対応を受講生自ら主体 的に考究する能力を養うべく、その基礎となる林政学・森林資源経 済学・環境経済学分野の理論や分析枠組みを解説する。世界及び日 本における森林・林業問題、関わる環境問題の解決に資する人材を 育成することを目標とする。授業は、その基礎となる林政学・森林 資源経済学・環境経済学分野の理論や分析枠組みを解説すると共 に、国内外の関連事例に関しても詳解する。	
0ANB418	森林資源社会学特論	1	2. 0	1 - 2	春AB	月3,4	興梠 克久	森林資源と人間社会との関連構造とその変容過程について、森林資源と地域社会、森林資源の利用・保全・管理主体と組織、森林資源に関わる政策など社会経済学的な視点から講述する上で必要な専門的理体制の構築に向けた今日的課題を明らかにする上で必要な専門的知識と研究方法等を習得することを目標とする。授業では、森林資源と地知識と研究方法等を習得することを目標とする。授業では、森林資源と地切談社会、森林資源の利用・保全・管理主体と組織、森林資源に関わる政策など社会経済学的な視点から、森林資源社会学の研究の最新動向を紹介しながら講述する。	

OANB420	国際地縁技術開発科学 特論A	1	2.0	1 • 2	通年	応談	農林社会経済学に関連する国際農林業開発学、国際食料需給論、地 域森林資源開発工学、および地域森林開発経済学の基本的な知識と 各学問分野における様々な研究手法についてその原理と共学習す る。また、当該分野の最新のトピックスを取り上げて紹介すること で、世界的に注目されている課題や最新の研究について学ぶ。農林 社会経済学に関連する幅広い知識を系統的に学習することで、国際 地縁技術開発科学分野における課題の設定と計画の立案・遂行に必 要な基礎及び専門的な知識と能力を習得する。	
---------	-------------------	---	-----	-------	----	----	--	--

専門科目	_生物環境工学領域(生物	資源科	学学位	プログ	ラム)					
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考	;
OANB501	生物環境工学演習IS	2	2. 0	1	春ABC	応談	ネスフド敏幡幹中顕山祐宮周源潤でアンル井北英小明杉陽小輝山拓安 マニアエ井北英小明杉陽小輝山拓安 マニア江豊梶幹奈卓山昭吉竜真絵 は、	生物環境工学に関連する分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深め、研究テーマに関する研究動向を把握すると共に、研究成果を適切に評価する能力を養う。参考書・参考資料等については、生物環境工学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進める。(1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介	研究室	
OANB502	生物環境工学演習IF	2	2. 0	1	秋ABC	応談	ネスフド敏幡幹中顕山祐宮周源潤でアンル井北英小明杉陽小輝山拓安ストル、勢村一林子本祐杉仁田磨久、井、東村一林子本祐杉仁田磨久、井、川、豊梶幹奈卓山昭吉竜真絵は、北、川、山佳佐中下彦本彦野里は、東京、	生物環境工学に関連する分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、各自が取り組む修士論文の研究課題との関連性についても議論を深める。授業は、下記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める、(2) 論文として求められる必須要素の理解、(3) 紹介論文の適切な評価	研究室	
OANB503	生物環境工学演習IIS	2	2. 0	2	春ABC	応談	ネスフド敏幡幹中顕山祐宮周源潤でアストル 敦村一林子本祐杉仁田磨久ストル 敦村一林子本祐杉仁田磨久水上がアエリオ北英小明杉陽小輝山拓安小明・大明・大明・大明・大明・大明・大明・大明・大明・大明・大明・大明・大明・大明	生物環境工学関連分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深めるとともに、その研究成果を適切に評価し、自らの視点で科学的・論理的に考察する能力を養う。また、各自が取り組む修士論文の研究課題との関連性について、実験手法や結果と考察について読み込こんだ上で議論を深める。授業は、下記の計画で進める。 (1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介と討論	研究室	

OANB504	生物環境工学演習IIF	2	2.0	2	秋ABC	応談	ネヴェス マルコ	生物環境工学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する 討論を通してその研究成果を適切に評価する能力を養う。また、その 討論を通して科学的・論理的思考能力を身につけ、自らの視点で 考察し、新たな研究課題や研究手法を発見・考案する。授業は、下 記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察 し、新たな研究課題や研究手法を発見・考案する。	研究室
OANB505	生物環境工学特別研究 IS	3	3.0	1	春ABC	応談	ネヴェス マルコ ス アントニオ,ト ファエル アハメ ド,石井 敦,江前 敏幡谷,北英村,梶山 幹井,川本 本佐 株 サモ,田本 本佐	生物環境工学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際が現に関して定知的に報告を行い、討論を通じて体系的な思考力、科学的・論理的なら、授業は、下記の計画で進める。また、研究名で必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 春学期における研究課題の設定、(2) 春学期における研究課題の設定、(2) 春学期における研究計画の立案、(3) 春学期における研究材料の収集、(4) 春学期における実験が出る実験がある実験が、(6) 春学期における実験が出る実験が出まけるデータ解析法、(8) 春学期における研究結果の考察、(10)	研究室
OANB506	生物環境工学特別研究 IF	3	3. 0	1	秋ABC	応談	ネヴェス マルコ ス アントニオ,ト ファエル アハメ ド,石井 敦,江前 幡谷,北一, 擬 幹夫, 小本 本佐 原	生物環境工学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的考察力を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 秋学期における研究課題の設定、(2) 秋学期における研究計画の立案、(3) 秋学期における研究科学の収集、(4) 秋学期における実験方法の検討、(5) 秋学期における実験・調査の実施、(6) 秋学期におけるデータの収集、(7) 秋学期におけるデータ解析法、(8) 秋学期における研究結果の考察、(9) 秋学期における研究	研究室
OANB507	生物環境工学特別研究 IIS	3	3. 0	2	春ABC	応談	ネヴェス マルコ ス アントニオ,ト ファエル アハメ ド,晴, 共村 村 標 幡谷 英一, 梶山	生物環境工学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学ぶ。また修士論文の中間発表を行うことで、プレゼンテーション技法を身につける。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学研究のまとめ方、(7) 修士論文中間発表資料の作成、(8) プレゼンテーション技法、(9) 修士論文の中間発表	研究室

OANB508	生物環境工学特別研究 IIF	3	3. 0	2	秋ABC	応談	ネスフド敏幡幹中顕山祐宮周源潤ヴァア、晴谷夫川郎川司本平川一、アル井北英小明杉陽小輝山拓安マニアに豊雄幹奈卓山昭吉竜真絵東、大・、敦豊梶幹奈卓山昭吉竜真絵東、大・、東・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	生物環境工学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学び、研究成果を修士論文としてまとめる。また修士論文会で可顕発表することで、プレゼンテーション技法を身につける。 授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文の書き方、(7) 修士論文作成、(8) プレゼンテーション技法、(9) 修士論文発表会での口頭発表	研究室
OANB509	生物環境工学演習IIF (春)	1	2. 0	2	春ABC	応談		生物環境工学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する計論を通してその研究成果を適切に評価する能力を養う。また、その計論を通して科学的・論神の思考能力を身につけ、自らの視点で表察し、新たな研究開始を発見・考案する。授業は、下記の計画で進める。 (1) 研究テーマに関する計論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	修したものは本科目を
OANB510	生物環境工学特別研究 IIF(春)	1	3.0	2	春ABC	応談	井 敦, 江前 敏晴, 北村 豊, 小幡谷 英一, 梶山 幹夫, 小林 幹佳, トファ	生物環境工学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学び、研究成果を修士論文としてまとめる。また修士論文発表会で口頭発表することで、プレゼンテーション技法を身につける。 授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文の書き方、(7) 修士論文作成、(8) プレゼンテーション技法、(9) 修士論文発表会での口頭発表	を履修したものは本科
OANB511	食資源工学特論	1	2. 0	1 • 2	秋AB	応談	ネヴェス マルコ ス アントニオ	食料、エネルギーの調達、および環境保全の調和を念頭に置いた生物生産活動に係る食資源工学の動向について解説し、開発実用化、活用主体の社会環境等に合う適正技術へと発展させるための基礎理念等を国際的視点から講述する。食資源の高度化を実現するため、に、必要な収支解析、移動論解析、物性解析と制御、食資源の変換技術、全体のシステム化について学ぶ。授業では、食資源工学分野に関わる工学的解析手法を理解させ、食資源の高度化・高付加価値化に関わる物性解析、制御、移動論、変換論、システム化を図ることを、理論的および実践的な面から教示する。	
OANB512	環境コロイド界面工学 特論	1	2.0	1 • 2	通年	応談	小林 幹佳, 山下 祐司, 杉本 卓也	環境コロイド界面工学ならびに関連分野に関する研究課題を設定し、その研究課題を解決するための専門的な研究法、実験法やデータ解析法を学び、研究計画を立案して研究を遂行する手法を学ぶ。また、体系的な思考能力を身につけ、科学的・論理的な考察ができる能力を修得する。水環境問題、土壌汚染、水処理などの基礎にある、コロイド界面現象について、工学的視点に基づいて、基礎から応用まで幅広く論考する。 特にコロイド分散系の分散、凝集、レオロジー、分離特性を制御する因子としての、界面電気現象、吸着、高分子の役割りを動的な視点から解説する。	対面

0AND354	Soil and Water Environmental Colloid Science	1	2. 0	1 • 2	春AB	月5,6	小川 和義	Introductory and fundamental lecture of colloid and interface science is given placing an emphasis on the application to soil and water, and bio and environmental engineering.	Introductory and fundamental lecture of colloid and interface science is given placing an emphasis on the application to soil and water, and bioenvironmental engineering. 9:30-16:00 生農B201(Seinou B201). 英語で授業。
0ANB513	生産基盤システム工学特論	1	2.0	1 · 2	通年	応談	小林 幹佳, 山下 祐司, 杉本 卓也	生産基盤である水と土における移動現象の工学的な解析手法の基礎を身に付ける。生物資源の生産基盤となる水や土壌における移動現象を数学的ならびに物理的に扱う上での基本的な考え方を学ぶ。授業は下記の項目に沿って行う。 (1) 水と土における移動現象、(2) 微分方程式とベクトル解析の入門、(3) 物質移動の基礎方程式、(4) 静電気の基礎方程式、(5) 化学反応の基礎、(6) 土水界面における吸着のモデル、(7) 流体力学の基礎方程式、(8) 土水界面近傍の動的現象	対面
0ANB515	流域保全工学特論	1	2. 0	1 • 2	春AB	火3, 4	奈佐原 顕郎, 山川 陽祐	水源となる山岳から都市の立地する河口に至る流域環境の保全について講義を行なう。授業では流域環境、水文学、水理学、土砂水理学、砂防工学、リモートセンシングをキーワードとして、流域の保全に関する工学的アプローチについて最新の研究成果を紹介、講述し、流域環境の保全、改善、さらには地球規模の環境との相互作用について考察する。これにより、流域、特に水源域における降雨流出過程や土砂移動現象、生態系との関わり、流域規模環境と地球規模環境との関わりについて理解を深めるとともに、これらの予測手法、モニタリング手法に関する先端知識を身につける。	
OANB516	水利環境工学特論	1	2. 0	1 • 2	春AB	応談	石井 敦	水資源の合理的かつ効率的な利用を図る際の課題として、量的側面では水文学的過程とその現象解析、水資源開発施設に関わる技術と社会制度を扱う。また環境との調和という視点から、現代の水資源問題について論じる。授業では、農業水利、 灌漑管理、 水利用計画、 水利調整、 水田、 水利組織、 稲作農業をキーワードとして講義を行うことで、農業用水の開発と調整に関する基本のな知識を習得し、水資源の評価および灌漑計画の策定ができる能力を身につけることを目標とする。	対面
OANB517	生物生産知能システム工学	1	2. 0	1 • 2	秋AB	木2,3	トファエル アハ メド	生物生産分野における知能システムの研究動向を紹介し、関連する 基礎知識の習得をめざす。食料、バイオマス生産における計測・制 御工学、システム工学の応用について論じる。授業では、農業シス テム工学、LCA、システム最適化、意思決定支援をキーワードと して、生物生産に係わる知能システム研究の動向を その基礎的な 知識の確認とともに講義する。また、生物生産における知能システ ムの研究動向を紹介し、関連する基礎知識の習得をめざす。	
OANB518	生物材料化学特論	1	2. 0	1 • 2	春AB	応談	梶山 幹夫, 中川 明子	生物材料の有機化学的性質を深く理解させ、合理的な利用法に結び付る。生物材料を有効利用するために、その材料特性を化学的な面から明らかにする。特に木材等の植物材料の化学的性質の関係、構成成分の化学的特性及びそれらの相互作用、生合成、組織内での分布等について講述する。下配の項目に沿って講義を進める。(1)生物材料化学の基礎・主要成分の組織内の分布および生合成、(2)セルロースの化学的特性 I、(3)セルロースの化学的特性 I、(4)へミセルロースの化学的特性 I、(5)へミセルロースの化学的特性 I、(7)リグニンの化学的特性 II、(6)リグニンの化学的特性 I、(7)リグニンの化学的特性 II、(6) リグニンの化学的特性 I、(7)リグニンの化学的特性 II、(8)生物材料の主要成分分析における化学反応、(9)生物材料の最新機器分析法、(10)生物材料利用における化学反応機構	

OANB519	生物材料利用工学	1	2. 0	1 • 2	秋AB	月4.5	梶山 幹夫,中川明子	生物材料の有機化学的性質を深く理解させ、合理的な利用法に結び付る。生物材料を有効利用する目的のために高分子化学的な面から材料特性を明らかにする。特に木材およびその他の生物材料を構成する成分の性質とその特長を活かした利用方法等について講述する。また、生物材料利用についての最新の研究内容を紹介し、特に以下の項目について解説を行う。 (1) 電子論ぼか基礎、反応の場、分子間力の制御、(2) 成分分析と成分分離法、(3) 環境に負荷をかけないために必要な技術また、関連研究分野について自分で調べた課題内容を発表する。	対面
OANB520	生物材料工学特論	1	2. 0	1 - 2	春0夏季 休業中	月5.6	江前 敏晴	代表的な生物材料である "紙" を例に、材料学的な特徴をより深く理解するための "画像処理法"について理解する。生物材料の高度利用を図るための技術の中で、材料の特性を非破壊で調べることは重要であり、そのための画像処理法ついて学ぶ。画像データは、粒子、結晶、シート、風景、顕微鏡画像など形のあるすべてのものが対象であり、それを処理して数値データにすることは極めて汎用的な技術であるので、いかなる分野の学生にも有用である。授業では、各回とも最初は講義を行い、画像処理法の習得に当たっては、Image-Jを利用して、顕微鏡画像等から材料の情報を計測する技術を学ぶ。 (1) 画像処理の方法とbmp(ビットマップ)の読み方、(2) ImageJのダウンロードとそれを使った画像処理の基本、(3) ImageJのダウンロードとそれを使った画像処理の基本、(3) ImageJのダウンロードとそれを使った画像処理の基本、(3) ImageJのダウンロードとそれを使った画像の類似性評価と材料変形の分析、(5)画像のフーリエ変換と繊維配向性評価、(6) 材料の光学顕微鏡写真の撮影、(7) 画像処理を使った分析の発表	別に日程を調整する この授業は、奇数年 (2021, 2023)は日 本語で、偶数年
0ANB521	生物材料加工学	1	2. 0	1 - 2	秋AB	応談1,2	小幡谷 英一	木材加工技術に関する基礎理論を習得するとともに、最新の加工技術を知る。最も有用な生物資源材料である木材を有効利用するためには、その特性を理解した上で、用途に応じて適切に加工しなければならない。本講義では、物理加工および化学加工に関する最新の論文を題材にして、木材の加工に関わる理論と技術を学ぶ。授業は全で英語で行う。 (1) 森林と木材について、(2) 木材の乾燥技術について、(3) 木材の力学特性について、(4) 木材の接着と塗装について、(5) 木質材料の製造法について、(6) 木質材料の特性について、(7) 木材の塑性加工について、(8) 木材の化学加工について、(9) 木材の経年変化について、(10) 木材成分の利用について	対面
OANB522	農産食品プロセス工学 特論	1	2. 0	1	春AB	木2, 3	北村 豊	農産機械学またはポストハーベスト工学は、食品加工分野への展開・進展あるいは農産物・食品の品質や機能・安全性の確保、さらには関連産業の持続的発展に対する社会的な要求の高さから、徐々に、それらの動向を取り込み変化してきた。ここでは「品質・機能性の向上」と「安全性の確保」を目的とする農産物・食品の処理程の体系について、そこで用いられる各種操作を基礎原理から解説し、処理工程の一貫した理解や食料資源の持続的な利活用に必要な内容を整理して解説する。	
OANB523	国際地縁技術開発科学 特論B	1	2. 0	1 · 2	通年	応談	小杉 昭彦, 宮本輝仁, 吉本 周平, 山田 竜彦, 源川 拓磨, 真野 潤一	生物環境工学に関連する食品品質評価工学、国際生物資源循環学、および生物圏情報計測制御学の基本的な知識と各学問分野における様々な研究手法についてその原理と共に学習する。また、当該分野の最新のトピックスを取り上げて紹介することで、世界的に注目されている課題や最新の研究について学ぶ。生物環境工学に関連する幅広い知識を系統的に学習することで、国際地縁技術開発科学分野における研究課題の設定と計画の立案・遂行に必要な基礎及び専門的な知識と能力を習得する。	連携大学院方式に関連する学生のみ受講可能
0ANB524	生物生産機械学特論	1	2. 0	1 • 2	春AB	火5, 6	トファエル アハメド	国内外の食料、生物資源生産における農業機械、農業機械化の歴史や現状を踏まえ、農業機械の利用、原理、構造、性能を学ぶととともに、農業現場でのデジタルフォーメーション(DX)にもとづいた、ICT、Io1及び人工知能の導入によるスマート農業を目指すために、UAVなどによる農作物や圃場のセンシング、農業用ロボットの開発などについて解説する。また、圃場機械で用いられている内燃機関や電力利用による動力エネルギーの構造や原理、応用について述べる。	

専門科目 応用生命化学領域(生物資源科学学位プログラム)

専門科目	_応用生命化学領域(生物	資源科	学学位	プログ	`ラム)		Ti .		
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OANB601	応用生命化学演習IS	2	2.0	1	春ABC	応談	野真青創小直谷顕蓓An香豊義古樹香浩山義野人尾美秀井俊向村一柳作林樹本山文中里福輝川石孝照俊兼匠南俊八幸上郎山村一柳作林樹本山文中里福輝川石孝照俊兼匠南俊八幸上郎山庙主市健高俊中子,原典橋秀田治大茂川紀橋子崎玉武,基原志川郎谷之村應 由,寿高溪加德浦和熊将桝仁木,堀,庙、川郎谷之村應 由,身本彦滋加德浦和熊将桝仁木,堀,	応用生命化学に関連する分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深め、研究テーマに関する研究動向を把握すると共に、研究成果を適切に評価目動力を養う。参考書・参考資料等については、応用生命化学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進める。(1)研究テーマに関連した優れた著書や学術論文等の収集・講読、(2)研究テーマに関する研究動向の把握、(3)論文紹介と討論	研究室
OANB602	応用生命化学演習IF	2	2. 0	1	秋ABC	応談	野真青創小直谷顕蓓和香豊義古樹香浩山義野人尾美秀井俊向村一柳作林樹本山文中唱福輝川石孝照俊兼匠南俊八幸上郎山村一柳作林樹本山文中的雅平純田一松一森人雲介幡深貴戸海彦村紀井彦中司惠da 春典橋秀田治大茂川紀橋子﨑宝武小基柏圭市健高俊中子,原興橋秀田治大茂川紀橋子﨑玉武小基原志川郎谷之村應 由,本彦滋加德浦和熊将桝仁木,堀,原、川郎谷之村應 由,本彦滋加德浦和熊将桝仁木,堀,	応用生命化学に関連する分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、各自が取り組む修士論文の研究課題との関連性についても議論を深める。授業は、下記の計画で進める。(1)研究テーマに関する討論により、論文内容の理解を深める、(2)論文として求められる必須要素の理解、(3)紹介論文の適切な評価	研究室

OANB603	応用生命化学演習IIS	2	2.0	2	春ABC	応談	野真青創小直谷顕蓓An香豐義古樹香浩山義野人尾美秀井俊向村一柳作林樹本山文付里福輝川石孝照俊兼匠南俊八幸上郎山楊木秀臼達田啓路Uta S、下典川吉純郎山小芳高陽松穣津美井瓜柏圭市健高俊中子 原典橋秀田治大茂川紀橋子﨑玉武子基原志川郎谷之村應 由,本彦滋加德浦和熊将桝仁木,堀,由,本彦滋加德浦和熊将桝仁木,堀,	応用生命化学関連分野の優れた著書や学術論文等を収集・講読し、 既存研究の内容を理解し専門知識を深めるとともに、その研究成果 を適切に評価し、自らの視点で科学的・論理的に考察する能力を養 う。また、各自が取り組む修士論文の研究課題との関連性につい て、実験手法や結果と考察について読み込こんだ上で議論を深め る。授業は、下記の計画で進める。 (1) 研究テーマに関連した優れた著書や学術論文等の収集・講 読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介と討論	研究室
OANB604	応用生命化学演習IIF	2	2. 0	2	秋ABC	応談		応用生命化学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する計論を通してその研究成果を適切に財命も身につけ、自らの視点を考えい、新たな研究課題や研究手法を発見・考案する。授業は、下記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	研究室

OANB605	応用生命化学特別研究 IS	3	3.0	1	春ABC	応談	野真神 相志川郎, 在 四十二 明 一, 所 一, 所 后, 健 高 俊 中 一, 所 任 本 一 四 市 市 一 市 的 市 一 四 市 市 一 四 市 市 一 四 市 市 一 四 市 市 一 四 市 市 一 四 市 市 一 四 市 市 市 一 四 市 市 市 市	応用生命化学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的に報告を行い、討論を通じて体系的な思考力、科学的・論理的なら察力を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 春学期における研究開題の設定、(2) 春学期における研究計画の立案、(3) 春学期における研究材料の収集、(4) 春学期における実験方法の検討、(5) 春学期における実験・調査の実施、(6) 春学期における子の収集、(7) 春学期におけるデータ解析法、(8) 春学期における研究結果の考察、(9) 春学期における研究進捗状況の報告	研究室
OANB606	応用生命化学特別研究 IF	3	3.0	1	秋ABC	応談	野真神 相志川郎, 在 四京 市創小直谷町 保 市 四京 市	応用生命化学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的考察力を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 秋学期における研究課題の設定、(2) 秋学期における研究計画の立案、(3) 秋学期における研究材料の収集、(4) 秋学期における実験方法の検討、(5) 秋学期における実験・調査の実施、(6) 秋学期における実験データの収集、(7) 秋学期におけるデータ解析、後、(8) 秋学期における研究結果の考察、(9) 秋学期における研究進捗状況の報告	研究室
OANB607	応用生命化学特別研究 IIS	3	3.0	2	春ABC		野村 暢彦, 柏原原木村 表示 表示 是一, 本村, 市村, 市村, 市村, 市村, 市村, 市村, 市村, 市村, 市村, 市	応用生命化学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学ぶ。また修士論文の中間発表を行うことで、プレゼンテーション技法を身につける。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学研究のまとめ方、(7) 修士論文の中間発表資料の作成、(8) プレゼンテーション技法、(9) 修士論文の中間発表	研究室

OANB608	応用生命化学特別研究 IIF	3	3. 0	2	秋ABC	応談	野真青創小直谷顕蓓和香豊義古樹徳一幡深貴郎山義野人尾美樹一柳作林樹本山文dre里福輝川石浩郎、穣津美戸俊兼匠南俊向楊木秀臼達田啓路Utw 竹雅平純田照松、武子,井一森人雲介山柏圭市健高俊中子,原典橋秀田治香茂秀井堀道川紀橋子崎瓜原志川郎谷之村應。由,本彦、滋大孝八幸上俊浦和熊将桝仁原志、川郎谷之村應。由,本彦、滋大孝八幸上俊浦和熊将桝仁	応用生命化学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修書論文としてまとめる。また修士論文発表をで工頭発表することで、プレゼンテーション技法を身につける。授業は、下記の計画で進める。また、研究者に必須である研究倫理(1)実験・調査の実施、(2)実験データの収集、(3)データ解析法、(4)研究結果の考察、(5)研究進捗状況の報告、(6)科学論文の書き方、(7)修士論文作成、(8)プレゼンテーション技法、(9)修士論文発表会での口頭発表	研究室
OANB609	応用生命化学演習IIF (春)	2	2.0	2	春ABC	応談	野真青創小直谷顕蓓和香豊義古樹香浩山義野人尾美秀井俊向村一柳作林樹本山文作里福輝川石孝照、後兼匠南俊八幸上郎山村一柳作林樹本山文作里福輝川石孝照、後兼匠南俊八幸上郎、庙生市健高俊中子,原典高秀田治大茂川紀橋子﨑玉武子基柏圭市健高俊中子,原典喬秀田治大茂川紀橋子﨑玉武子基原志川郎谷之村應,男本彦滋加徳浦和熊将桝仁木,堀	応用生命化学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する 討論を通してその研究成果を適切に評価する能力を養う。また、そ の計論を通して科学的・論理的服务能力を身につけ、自らの視点で 考察し、新たな研究課題や研究手法を発見・考案する。授業は、下 記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める。 (2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察 し、新たな研究課題や研究手法を発見・考案する。	

OANB610	応用生命化学特別研究 IIF(春)	3	3. 0	2	春ABC	応談	野真青創小直谷顕蓓An香豊義古樹徳一幡小芳高秀井俊向村一柳作林樹本山文中里福輝川石浩郎、穣川紀橋幸上郎山村一柳作林樹本山文中、竹雅平純田照松浦、和熊将深貴戸海庙村紀井彦中司、恵は春天中、川吉純加山山義野人津美井瓜柏圭市健高俊中子,原典橋秀田治香茂俊兼匠玉武子、基原志川郎谷之村應由,本意滋大孝八一森人木馬、小道原志川郎谷之村應由,本意滋大孝八一森	応用生命化学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する計論を通してその研究成果を適切に評価する能力を奏う。また、その計論を通して科学的・論理的思考能力を身にうる。授業は、下記の計画で進める。 (1) 研究テーマに関する計論により、論文内容の理解を深める。(2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	
OANB611	生体成分化学特論	1	2. 0	1 • 2	秋AB	月5,6	臼井 健郎,春原 由香里,古川 純, 松山 茂	資料を提示しながら生理活性物質の標的分子・作用機序や生体内挙 動、細胞応答、細胞機能制御剤の開発と安全性の評価等に関する講 義と質疑応答で構成する。	
0 ANB 612	ゲノム情報生物学特論	1	2. 0	1 • 2	春AB	木5, 6	谷本 啓司, 石田 純治, 加香 孝一 郎, 大徳 浩照	真核生物において、ゲノム・エピゲノム情報にプログラムされている細胞・個体生理機能と調節制御の研究に関し、先端的研究事例などを材料として科学的な思考・討論を行う能力を養う。真核生物のゲノム・エピゲノム情報にプログラムされている細胞・個体生理機能について、それらを制御する化学的および生物学的側面から考する。さらに、各研究分野のトピックスについて討論する。下記の項目に沿って授業を進める。(1)同じ土俵で議論する、(2)研究者としてのキャリアパス(その1)、(3)遺伝子・ゲノムの定義をいかに決めるか、(4)研究者としてのキャリアパス(その2)、(5)ゲノム情報研究のボトルネックとプレイクスルー1~4、(6)教員・学生が選んだテーマのグループディスカッション、(7)総括	
OANB613	構造生物化学特論	1	2. 0	1 • 2	秋AB	木5, 6	田中 俊之	構造生物化学分野の研究手法とこれによって得られる情報を理解することを目標とする。構造生物学における主たる3つの研究手法(核磁気共鳴法、終結晶解析法、電子顕微鏡法)について、実例を基にして詳細に解説する。 (1) 構造生物学とは?:何故構造解析が必要か、(2) 核磁気共鳴法の原理:MRIによる構造解析。(4) 核磁気共鳴法の原理:MRIによる構造解析。(4) 核磁気共鳴法の原理:大級結晶解析法の原理:結晶化、(6) X線結晶解析法の原理:結晶化。(6) X線結晶解析法の原理:結晶化。(6) X線結晶解析法の原理:結晶化。(6) X線結晶解析法の原理:結晶化。(6) X線結晶解析法の原理:結晶化。(6) X線結晶解析法の原理:結晶化。(6) X線結晶解析法の原理:結晶化。(7) X線結晶解析法の序用:構造解析例。(8) 電子顕微鏡法の原用:構造解析例。(10) 全体の総括:3つの研究手法の比較	対面
OANB614	微生物育種工学特論	1	2.0	1 • 2	通年	応談	小林 達彦	人類は古来より微生物を利用し、酒や乳製品などを作ってきた。また、微生物が二次代謝産物として作る抗生物質・生理活性物質は病気の治療や予防に貢献している。微生物研究が基礎および応用生物育は果たす役割について理解を深めることを目的とし、微生物育種工学に関する専門知識を持つ人材養成を図る。代謝機能に基づく微生物の多様性に注目し、そのユニークな優れた代謝機能の開発や、新規な機能が付与された微生物の創製は応用面で特に重要である。新規微生物資源および機能性タンパク質の探索・解析、環境浄化やエネルギー変換のための微生物育種、微生物遺伝子資源や生物工学等について、最新の知見を含め基礎・応用両面から解説する。	対面

OANB615	生物反応工学特論	1	2. 0	1 - 2	春AB	月5,6	市川 創作,平川秀彦	酵素および微生物の反応速度論、ならびに生物反応装置における流動や移動現象の工学的解析法、および生物反応プロセスシステムについて物理学、化学、生物学を基礎として最新の知見を含め専門的な知識を系統的かつ体系的に理解・修得する。授業では、酵素および微生物の反応速度論、ならびに生物反応装置における流動や移動現象の工学的解析法、および生物反応プロセスシステムについて物理学、化学、生物学を基礎として最新の知見を含め専門的な知識を系統的かつ体系的に解説する。	
0ANB616	微生物機能利用学特論	1	2. 0	1 - 2	春AB	応談	野村 暢彦	微生物機能と多様性とその利用法について学ぶことにより、微生物機能利用学分野の現状に関する理解が得られ、今後の展望についても考察できるように授業を行う。講義では、微生物機能の利用に関する歴史的変遷を講述すると共に、環境保全等への応用について、微生物生態の重要性についても論述する。下記の項目に沿って授業を行う。(1) ガイダンス:微生物機能学特論で何を学ぶか、(2) 微生物学の歴史:微生物の発見から現在まで、目的と研究技法の変遷、(3) 微生物機能の食品工業での利用、(4) 微生物機能の環境浄化への利用、(5) 微生物機能の制御1、(7) 微生物機能の制御1、(8) 環境微生物の生態について、(9) 微生物利用現地の視察、(10) 総括	
OANB617	細胞機能開発工学特論	1	2. 0	1 • 2	秋AB	木5,6	青柳 秀紀	微生物、植物および動物などの生物細胞や、その共生系や共存系が 有する有用な機能の発現、開発・拡大および利用に関する、細胞機 能開発工学や生物化学工学に関連した専門的知識(培養環境の把 握、様々な制御法、培養法、培養システム、定量的な評価など)を 歴史的背景から最新の知見も含め系統的、体系的に解説する。ま た、本特論に関連した課題について討論をおこない、研究のあり 方・進め方を教授する。	
OANB619	分子発生制御学特論	1	2. 0	1 • 2	秋AB	応談	柏原 真一	配偶子形成から受精および胚・個体発生過程での高次制御機構を分子細胞生物学レベルで解説し、生命発生の重要性と連続性を理解する。近年進歩の著しい発生・生殖工学や、再生医療などについても取り上げる。また、本分野に関連した最新の学術論文について討論をおこない、研究の動向や方向性の理解に努める。	対面
OANB620	生体情報制御学特論	1	2. 0	1 - 2	秋AB	火5,6	木村 圭志	遺伝情報や染色体構造の制御機構に関する先駆的な著書や学術論文の講義を通じて、最新の情報を取得する。遺伝情報や染色体構造は、さまざまな生体内外の情報によって制御される。この情報制御や染色体構造の破綻はさまざまな疾患を引き起こす。本特論では、遺伝情報や染色体構造の制御機構に関する先駆的研究を概説する。(1) 間期クロマチン構造の遺伝情報の関連について述べる。(2) 間期クロマチン構造と遺伝情報の関連についての最新の研究動向について述べる。(3) 分裂期染色体構造や動態に関する最新の研究動向について述べる。(4) 分裂期染色体構造や動態に関すする最新の研究動向について述べる。(5) 分裂期染色体の構造や動態の異常と疾患の関係の最新の研究動向について述べる。	対面(オンライン併用型)
OANB621	負荷適応微生物学特論	1	2. 0	1 • 2	通年	応談	高谷 直樹, 中村 顕, 應 蓓文, 八幡 穣	微生物の生態、機能、地球環境とのかかわりについて理解するとともに、応用微生物研究の重要性を認識し、応用微生物学に関する値ない専門性を養う。さらに、これらの分野の研究の現代の課題について考えることができるようになる。授業では、様々な環境中に適応して生息する微生物の生態、地球環境、機能の利用とのかかわりについて、微生物学的見地から解説するとともに、それらを利用した様々な環境負荷への対応策について論じる。	対面(オンライン併用型)

OANB622	食品機能化学特論	1	2.0	1 • 2	秋AB	月5,6		食品の機能の中で、嗜好性や品質保持に関与する二次機能と生体調節機能である三次機能について、化学的な構造と性質、食品添加物としての利用とその製造法、機能性成分を利用した新しい食品の食品の所食について解説する。また、負の機能として食品衛生の観点から授業品中の有害物質や、生物による食品汚染についても解説する。授業品中の有害の対策、役食品の機能性の分類、(2)食品衛生概論、食品の一方害成分、生物的食品汚染。(3)食品の二次機能とそれに関連する機能性成分:保存料、殺菌料、防かび剤、着色料、香料、増粘剤、ゲル化剤、分散剤(4)食品の三次機能とそれに関連する機能性成分:免疫系、消化系、分泌系、神経系、(5)疫学的な研究手法 官能検査	対面
OANB624	植物環境生化学特論	1	2.0	1 · 2	秋ABC	応談		植物と環境の化学的諸要因との係わり、特に植物の機能、生理活性 物質の作用と対応、耐性・解毒代謝機構について解説する。下記の 項目に沿って授業を進める。(1) 植物と環境ストレス、(2) 植物 と大気汚染、(3) 植物と地球温暖化、(4) 植物と栄養、(5) 植物と	
OANB625	生物機能科学特論	1	2.0	1 · 2	通年	応談	玉木 秀幸 深津	応用生命化学に関連する食品分子認識工学、共生進化生物学、複合生物系利用工学、機能性神経素子工学、動物リソース工学、および植物環境/ノム科学の基本的な知識と各学問分野における様々あのの手についてその原理と共に学習する。また、当該分野の最新のトピックスを取り上げて紹介することで、世界的に注目されている課題や最新の研究について学ぶ。応用生命化学に関連する幅広い知識を系統的に学習することで、修士論文の研究課題の設定と計画の立案・遂行に必要な基礎及び専門的な知識と能力を習得する。	連携大学院方式に関連

専門科目 バイオシステム学領域(生物資源科学学位プログラム)

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OANB701	バイオシステム学演習 IS	2	2. 0	1	春ABC	応談	粉川 美踏,小口 太一,繁森 英幸, 中島(神戸) 敏明, 北村 豊,楊 英男, 渡邉 和里 野村	バイオシステム学に関連する分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深め、研究テーマに関する研究動向を把握すると共に、研究成果を適切に評価する能力を養う。参考書・参考資料等については、バイオシステム学に関する国際的に著名な雑誌、専門書を紹介する。授業は、下記の計画で進める。 (1) 研究テーマに関連した優れた著書や学術論文等の収集・講読、(2) 研究テーマに関する研究動向の把握、(3) 論文紹介と討論	研究室
OANB702	バイオシステム学演習 IF	2	2. 0	1	秋ABC	応談	粉川 美踏, 小口 太一, 繁森 英敏明, 中島(神戸) 楊 英男, 北村 豊, 楊 英男, 渡邉 和男, 野村	パイオシステム学に関連する分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、各自が取り組む修士論文の研究課題との関連性についても議論を深める。授業は、下記の計画で進める。 (1) 研究テーマに関する討論により、論文内容の理解を深める、(2) 論文として求められる必須要素の理解、(3) 紹介論文の適切な評価	研究室
OANB703	バイオシステム学演習 IIS	2	2. 0	2	春ABC	応談	切川 天路, 小口	バイオシステム学関連分野の優れた著書や学術論文等を収集・講読し、既存研究の内容を理解し専門知識を深めるとともに、その研究成果を適切に評価し、自らの視点で科学的・論理的に考察する能力を養う。また、各自が取り組む修士論文の研究課題との関連性について、実験手法や結果と考察について読み込こんだ上で議論を深める。授業は、下記の計画で進める。・第1~6回:研究テーマに関連した優れた著書や学術論文等の収集・講読・第7~13回:研究テーマに関する研究動向の把握・第14~20回:論文紹介と討論	研究室

OANB704	バイオシステム学演習 IIF	2	2. 0	2	秋ABC	応談	粉川 一, 小英 敏男, 小子 女 敏男, 小英 敏男, 明 一, 接 和 引 ,	バイオシステム学関連分野の優れた著書や学術論文等を収集・講読し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。またる討論を通して科学的・論理的思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。授業は、下記の計画で進める。(1) 研究テーマに関する討論により、論文内容の理解を深める。(2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。	研究室
OANB705	バイオシステム学特別 研究IS	3	3. 0	1	春ABC	応談	粉太 中 計	バイオシステム学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実態状況に関して定期的に報告を行い、計論を通じて体系的な思考力、科学的・論理的な考察力を修得する。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 春学期における研究課題の設定、(2) 春学期における研究計画の立案、(3) 春学期における研究材料の収集、(4) 春学期における安敦方法の検討、(5) 春学期における実験・調査の実施、(6) 春学期における実験が、(5) 春学期における実験が、(6) 春学期における研究結果の考察、(9) 春学期における研究結構が、(8) 春学期における研究結果の考察、(9) 春学期における研究	研究室
OANB706	バイオシステム学特別 研究IF	3	3.0	1	秋ABC	応談	粉太中北渡名弥藤策川一島村邊可內,內弓島村邊可別,內房內,內弓,內房內,內房內,內房內,內房內,內房內,內房內,內房內,內房內,	バイオシステム学に関する研究課題を設定し、その研究課題を解決するための専門的な研究法や実験法、データのまとめ方や解析法を学び、研究計画を立案する。その計画に沿って実際に研究を遂行し、取得した実験データの解析を行う。研究の進捗状況に関して定期的に報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。授業は、下記の計画で始める。また・研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 秋学期における研究課題の設定、(2) 秋学期における研究計画の立案、(3) 秋学期における研究料の収集、(4) 秋学期における実験方法の検討、(5) 秋学期における実験・調査の実施、(6) 秋学期における実験データの収集、(7) 秋学期におけるデータ解析法、(8) 秋学期における研究結果の考察、(9) 秋学期における研究	研究室
OANB707	バイオシステム学特別 研究IIS	3	3.0	2	春ABC	応談	太一,繁森,英幸,中島(神戸) 敏明,北村 豊,楊 英男,渡邉 和男,野村	バイオシステム学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学ぶ。また修士論文の中間発表を行うこ声で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学研究のまとめ方、(7) 修士論文中間発表資料の作成、(8) プレゼンテーション技法、(9) 修士論文の中間発表	研究室
OANB708	バイオシステム学特別 研究IIF	3	3. 0	2	秋ABC	応談	太一,繁森,英幸,中島(神戸) 敏明,北村 豊,楊 英男,渡邉	バイオシステム学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論文作成方法を学び、研究成果を修士論文としてまとめる。また修士論文発表。でのでは、研究の果を修士論文としてまとめる。また、断究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。 (1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文の書き方、(7) 修士論文作成、(8) プレゼンテーション技法、(9) 修士論文発表会での口頭発表	

								バイオシステム学関連分野の優れた著書や学術論文等を収集・講読	研究室。演習IIFを履
OANB709	バイオシステム学演習 IIF (春)	2	2. 0	2	春ABC	応談	粉川 美海 美国 教 美	し、その中から適切な文献を選び論文紹介を行い、そのテーマに関する討論を通してその研究成果を適切に評価する能力を養う。また、その討論を通して科学的・議理的思考能力を身につけ、自らの視点で考察し、新たな研究課題や研究手法を発見・考案する。授業は、下記の計画で進める。(1) 研究テーマに関する討論により、論文内容の理解を深める。(2) 科学的・論理的思考能力を身につける。(3) 自らの視点で考察	修したものは本科目を 履修できない
OANB710	バイオシステム学特別 研究IIF (春)	3	3. 0	2	春ABC	応談	粉英島(神聖) 一种	バイオシステム学に関する自らの研究課題に取り組み、定期的に研究の進捗状況に関する報告を行い、討論を通じて体系的な思考力、科学的・論理的な考察力を修得する。研究成果のまとめ方、論論文条表会で口頭発表することで、プレゼンテーション技法を身につける。授業は、下記の計画で進める。また、研究者に必須である研究倫理教育についても、研究の進行に合わせ適宜行う。(1) 実験・調査の実施、(2) 実験データの収集、(3) データ解析法、(4) 研究結果の考察、(5) 研究進捗状況の報告、(6) 科学論文の書き方、(7) 修士論文作成、(8) ブレゼンテーション技法、(9) 修士論文発表会での口頭発表	を履修したものは本科
OANB711	植物機能生理化学特論	1	2. 0	1	春AB	火3, 4	山田 小須弥	植物生理化学、天然物化学、化学生態学的手法などの一般的な植物機能分子の解析法を理解し専門知識を深めるとともに、その研究成果を適切に評価する能力を養う。授業では、植物生理化学、天然物化学、化学生態学的手法などの一般的な植物機能分子の解析法を基礎として解説し、さらに植物化学調節、植物工場などの様々な分野における植物機能生理化学の実例を挙げて詳述する。下記の項目について授業を行う。(1)主要な植物ホルモン・二次代謝物質について(2)植物の環境応答について(光屈性・オーキシン説、光阻性・インヒビタ一説)、(3) 植物の環境応答について(重力屈性・オーキシン説、重力屈性・インヒビター説)、(5) 植物の環境応答に切いて(関与する生理活性物質について(光屈性、重力屈性)、(5) 植物の環境応答について(関審的アレロパシー、促進的アレロパシー、根圏微生物との関わり、バイオコントロール、有途に関与する生理	
OANB712	遺伝子多樣性学特論	1	2. 0	1	秋AB	金1, 2	渡邉 和男, 小口太一	生物多様性の基盤となる遺伝的変異について、植物を主体例として、生物学的な観点から論じる。遺伝子多様性に関わる保全、産業利用や知的所有権について社会、経済、法律及び国際関係の観点を含め序説的に講述し、一般的理解を提供する。 生物多様性と遺伝的多様性の概論。21世紀の戦略的な国家資源としての遺伝資源の学際的論議、遺伝子多様性の生物学、遺伝的多様性の測定について遺伝学的理論及び分子生物学を主体とした測定技術の紹介、生物多様性の保全について学際的アプローチによる生息域内保全及び生息域外保全、ジーンバンク、バイオリソースセンターと植物園などの関係の紹介、保全の技術の解説及び遺伝的多様性の産業利用と国際的関心事項の総合討論を行い、基礎的理解を得る。	essential. Online courses from overseas are not available for non- degree students. Presentation and term papers are
OANB713	生理活性天然物化学特 論	1	2. 0	1	秋AB	火5, 6	繁森 英幸	生物の神秘的な生命現象や不思議な生物現象に関わる天然生理活性物質の構造と機能について、天然物化学、生物有機化学的観点から解説するとともに、これらの物質が関与する医薬品や農薬の開発に関して最近のトピックスを交えながらの化合物の機器分析による構造解析法について修得する。また、天然生理活性物質の生合成や作品機構ならびに医農薬への応用についての知識を容潔めることを目標とする。授業では、生物の神秘的な生命現象や不思議な生物現象とも移り、大きでは、大きでは、大きでは、大きでは、大きでは、大きでは、大きでは、大きでは	

OANB714	産業微生物資源学特論	1	2.0	1	春AB	月3,4	中島(神戸) 敏明	微生物分野に関して、高い学識を兼ね備えた研究者および幅広い専門知識を持ち社会貢献する高度職業人の養成を目的とする。授業では、産業上重要な役割を果たしている微生物と、その育種・利用方法について解説する。また、近年注目されている微生物を用いた環境浄化や、培養不可能な微生物遺伝子資源の直接利用についても紹介し、理解を深める。 (1) 産業と微生物、(2) 発酵と発酵食品、(3) 純粋培養と微生物、(1) 産業と微生物、(2) 発酵と発酵食品、(3) 純粋培養と微生物工業、(4) 環境浄化と微生物、(5) 循環型社会と微生物、(6) 微生物の産業利用の実際、(7) 研究紹介、(8) 環境微生物とメタゲノム生態から利用へ、(9) メタゲノムの実際、(10) まとめと討論	
OANB716	海洋システム環境工学 特論	1	2. 0	1	秋AB	水1,2	内海 真生	本講義では海洋の物理・化学・生物過程の基礎理論について解説 し、海洋環境の包括的理解を深めると共に、地球環境における海洋 の役割や海洋の環境問題について理解することを目的とする。海洋 の様々なシステムは地球環境に大きな影響を与えている。本講義 は海洋の物理・化学・生物過程の基礎理論について解説し、海洋環境の包括的理解を深めると共に、地球環境における海洋の役割係由 洋の環境問題について講義する。また、担当者がこれまでしま できた海洋調査研究の実際を紹介することで、海洋に関する新たな 研究課題を開拓していくためのヒントを提供したい。	対面
OANB717	食料システム学特論	1	2.0	1	秋BC	金6,7	北村 豊, 粉川 美踏	食料資源の生産から消費までの過程は、多種多様不斉一な生物体を 対象とすること、省エネルギー・省資源等の持続性を要求されるこ と、自然の影響を受け人為的制御が困難であること、等の理由か ら、その品質や安全性を管理するにはトータルなシステムとして取 り扱うことが有効である。ここでは食料システムの解析に必要不可 欠な理論や技術について解説する。	英語で授業。 オンライン(オンデマ
OANB718	バイオ・物質循環工学 特論	1	2.0	1	通年	応談	楊 英男	自然界における物質の循環に係わる様々な現象を、工学基礎及び生物工学を基盤とする専門技術と、環境・エネルギー・バイオ・材料などの学際分野の最新知見を用いて総括的に解説する。グローバルな視点に立ったモノづくりを通じて持続的発展と人類の健康に関連する最新のトピックスを取り上げて紹介することで、世界的に共享も出れている課題や最新の研究について学ぶ。関連する幅広い知識を系統的に学習することで、研究課題の設定と計画の立案・遂行に必要な基礎及び専門的な知識と能力を習得する。	
OANB719	生物プロセス工学特論	1	2.0	1 • 2	通年	応談	野村 名可男	微生物や動物細胞を用いた生理活性物質の生産プロセスおよび生物学的、物理化学的手法を用いた湖沼、養殖場の水質保全・修復プロセスについて研究論文を講読・解説すると共に、討論を通じてプロセス開発の進め方を教授する。生物プロセスに関する最新の研究を取り上げて紹介することで、世界的に注目されている課題や最新の生物プロセス開発について学ぶ。関連する幅広い知識を系統的に学習することで、プロセス開発の課題設定と計画の立案・遂行に必要な基礎及び専門的な知識と能力を習得する。	
OANB720	国際生命産業科学イン ターンシップ	3	1.0	1 • 2	通年	応談	野村 名可男	海外協定校との協力のもとに実施する「生命産業科学若手研究者育成プログラム」に企画・準備段階から参加し、国際交流プログラムの実務を体験する。国際交流事業を企画・運営をサポートする形でその準備院階から参加し、円滑な運営に重要な後方支援の具体的な実施スキルを習得する。本科目を履修することで、国際的なマネージメント能力、コミュニケーション能力、また、チームワーク力と実践力を習得できる。	
OANB721	生命産業科学R&D特論	1	1.0	1	秋ABC	応談	繁森 英幸	生命産業の現状とフロンティアについて具体的な事例を挙げながら紹介し、基礎研究から開発研究プロセスにおけるさまざまなフェーズでの情報収集や解析について学ぶ。また、生命産業分野における研究開発時の諸問題について解説すると共に、問題解決に向けた議論を行う。本科目を履修することで、生命産業分野でイノベーションを創出する基礎となる論理的な思考力や判断力など総合的なスキルを習得することができる。	

0ANB722	動物細胞バイオテクノロジー特論	1	2.0	1 • 2	通年	応談	伊藤 弓弦	動物細胞バイオテクノロジーに関連する諸課題、ならびに修士論文 執筆のための研究課題に関する著書や国内外の学術論文を収集して 講読・講義することで、動物細胞バイオテクノロジーの基本的な知 歳と様々な研究手法についてその原理と共に学習する。また、当分 野の最新のトピックスを取り上げて紹介することで、世界的に注目 されている課題や最新の研究について学ぶ。関連する幅広い知識を 系統的に学習することで、修士論文の研究課題の設定と計画の立 案・遂行に必要な基礎及び専門的な知識と能力を習得する。
OANB723	ケミカルバイオロジー 特論	1	2. 0	1	秋AB	木5,6	宮前 友策	化学を基盤とした研究手法および技術の開発と、それらを利用した 生命現象の解明、生体の制御に関する研究例を解説するとともに、 創薬への応用に関して、最近のトピックスを交えながら紹介する。 生体を構成する分子の機能や生合成について、化学および生命科学 両面の視点から概説し、化学の視点から生命現象を捉えることの重 要性について学ぶ。また、ケミカルバイオロジー分野におけるマイ ルストーンとなった代表的な研究手法および技術について、どのよ うなアイデア・コンセプトに基づいて開発されたのか、また、とどの ような形で生命科学分野に活用されているか、理解を深めることを 目標とする。特に、生理活性小分子化合物を用いた分子プローブの 合成、それらを用いた生体分子の標識、薬剤分子設計について、天 然物化学、医薬品化学、分子細胞生物学の観点から講述する。さら に、タンパク質分解制御に関する研究を一例として、化学的手法を 用いた生体の制御および創薬開発への応用について、最近のトピッ クスを交えながら紹介する。