物理学学位プログラム(博士前期課程)

専門基礎科目(物理学学位プログラム共通)

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJC001	物理学セミナー	1	1.0	1	秋AB	水6	物理学学位プログラム専任教員	物理学のさまざまな専門分野における最先端の研究成果や興味ある話題について、各分野の教員がオムニパス形式で紹介し、分りやすく解説する。受講者は、自分の専門分野以外の分野の研究について、そこでの優れた研究成果と優れた発表に触れることにより、基本的知識を獲得し、物理学一般についての幅広い視野を養う。これにより、自分の研究分野および研究テーマのおかれた位置を客観的に俯瞰し、その意義を見直す。専門分野には、素粒子物理学、原子核物理学、宇宙物理学、物性物理学・生命物理学、ブラズマ物理学を含む。	必修 要望があれば英語で授 業、対面(オンライン 併用型) 01BC001と同一
0AJC011	共同研究!	3	1.0	1 • 2	通年	集中	物理学学位プログ ラム専任教員	国内外の大学・研究機関に滞在し、他大学・他機関の研究者と協力して、物理学の各専門分野における共同研究を行う。例えば、大学内では利用することのできない大規模な研究装置を用いた実験・観測・計算などを共同で遂行する。国内・国外の一流の研究者と議論を交わし、協力して研究に従事することによって、研究を完遂するのに必要となる実践的技能を獲得し、また、グローバルな競争力と協調性を修得する。本科目では、先行研究の調査と実際の研究の立案を行い、研究に着手する。	対面(オンライン併用型)
0AJC012	共同研究11	3	1.0	1 · 2	通年	集中	物理学学位プログラム専任教員	国内外の大学・研究機関に滞在し、他大学・他機関の研究者と協力して、物理学の各専門分野における共同研究を行う。例えば、大学内では利用することのできない大規模な研究装置を用いた実験・観測・計算などを共同で遂行する。国内・国外の一流の研究者と議論を交わし、協力して研究に従事することによって、研究を完遂するのに必要となる実践的技能を獲得し、また、グローバルな競争力と協調性を修得する。本科目では、共同研究Iに引き続き、研究を遂行し、完結させる。	対面 (オンライン併用型)
0AJC021	場の理論Ⅰ	1	1.0	1 • 2	春AB	火3	伊敷 吾郎	現代物理学において最も重要な理論の一つである「場の量子論」の基礎を学ぶ。本講義ではまず、特殊相対性理論と量子力学の統一理論として場の理論を導入する。その後、場の理論における幾つかの基礎的な公式や計算テクニックを紹介し、場の理論の定式化から出発してどのように物理量が計算できるのかを概観する。この講義で扱うトピックは、特殊相対論の復習・特殊相対論的粒子の理論・自由スカラー場の理論・自由場の正準量子化・相互作用のある場の理論・S行列・散乱断面積・LSZ公式等である。	01BC002と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)
OAJCO22	場の理論[[1	1.0	1 • 2	秋AB	火3	伊敷 吾郎	場の理論の経路積分を用いた定式化と繰り込み理論、さらには標準模型を含んだゲージ場の理論の定式化等について学ぶ。本講義の前半では経路積分を扱う。ここではまず、最も単純なスカラー場の理論を用いて経路積分法を導入する。そしてその例を用いて、場の理論における摂動論と、さらには摂動論において非常に重要となるファインマンダイアグラムの考え方を紹介する。講義の後半では、場の理論の発散を取り除く手法である繰り込み理論について学び、その後、スカラー場以外の場の理論をいくつか紹介する。特に電子やクォークなどのフェルミオンや光子のようなのゲージ粒子がある場合に、どのように理論が定式化されるのかを紹介する。	01BC0003と同一。 要望があれば英語で授 業、対面(オンライン 併用型)
OAJCO26	統計力学	1	1.0	1 - 2	秋AB	月2	谷口 伸彦	幅広く物理学の基礎を学び、各自の専門分野における高度な知識 (量子統計物理の枠組みと量子多体系を取り扱う概念・技巧)を習 得する。 本講義は、量子効果や多体相関を持つ系の微視的模型からどのように「正しい現象論」(有効場理論)を導くことが可能であるのか、その考え方と技巧の基礎を学ぶことが目的である。講義題材は主に非相対論的な電子系・ボーズ系・スピン系といった物性論の分野から取り上げるが、その重要性はこれらの分野に留まるものではない。本講義では、相互作用を行う量子多体系の性質を調べるため、標準的に用いられている「量子統計物理における場の理論の方法」を基礎から学ぶ。前半で考え方と技巧の基礎を学び、後半では、いくつかの具体的なトピックにそれらを適用することで理解を深める。	01BC093と同一。 要望があれば英語で授業. 対面

0AJC031	計算物理学	1	2. 0	1 • 2	秋AB	月・木3	大野 浩史, 庄司 光男, 矢島 秀伸	計算素粒子物理学、計算宇宙物理学、計算生命物理学の基礎を修 得する。計算素粒子物理学では、モンテカルロシミュレーション の基礎から始めてQCDシミュレーションによるハドロン質量スペク トラムの計算の概要を解説する。計算宇宙物理学では、天体形成 にとって重要な流体力学の数値シミュレーションについて、流体 力学の基礎から解説する。計算生命物理学では、分子動力学法と 密度汎関数理論に基づく電子状態計算の概要を解説する。	01BC096と同一。 要望があれば英語で授業・対面
0AJC036	物理学実習[3	1.0	1 • 2	通年	集中	物理学学位プログ ラム専任教員	物理学における基礎的な事項について、講義・演習・実験・実習等を通して、知識と実践的技能を身につける。具体的な例として、総合研究大学院大学(高エネルギー加速器科学研究科)の提供する公開科目「計測と制御」を通した、実験・観測システムに用いられるエレクトロニクス技術の基礎の習得があげられる。	オンライン(同時双方 向型)
0AJC037	物理学実習!!	3	1.0	1 • 2	通年	集中	物理学学位プログラム専任教員	物理学における基礎的な事項について、講義・演習・実験・実習 等を通して、知識と実践的技能を身につける。具体的な例として、総合研究大学院大学(高エネルギー加速器科学研究科)の提供 する公開科目「計測と制御」を通した、実験・観測システムに用 いられるエレクトロニクス技術の実践的な技能の習得があげられ る。	オンライン(同時双方向型)
0AJC038	物理学実習!!!	3	1.0	1 • 2	通年	集中	物理学学位プログラム専任教員	物理学における基礎的・発展的な事項について、講義・演習・実験・実習等を通して、知識と実践的技能を身につける。具体的な例として、総合研究大学院大学(素粒子原子核コース)の提供する他大学開放科目「センサー信号処理演習」を通した、実験・観測システムに用いられるASIC開発技術の習得があげられる。	
OAJC039	物質科学概論	1	1.0	1 • 2				物質科学は周期律表に記載されているあらゆる種類の原子の組み合わせで、多様な物性を発現させることを目的としており、現代社会の様々な基盤をなしている。物質の性質を自在に操るためには、物質科学の基礎的な概念、および様々な解析手法を習得する必要がある。本講義では物質を舞台とする諸現象を、量子力学の第一原理に立脚した計算手法で解き明かすための基礎となる概念および計算手法を論ずる。凝縮系物理学におけるエネルギー帯計算の手法、多体問題解決の手法などを解説する。	教室:総合B302 西暦偶数年度開講。 01BC097, 0AJR070と同一。 要望があれば英語で授業 対面授業、状況によってはオンライン(双方 向型)
0AJC041	素粒子物理学	1	1.0	1 • 2	春BC	月2	武内 勇司	素粒子の種類と素粒子間の相互作用は素粒子物理学の標準模型でよく記述される。この科目では、素粒子物理学の基礎と標準模型の成り立ちを概説する。まず、物理学における対称性と保存則の関係の説明を経て、スピンとアイソスピンについて学び、ボーズ粒子・フェルミ粒子を記述する場の方程式を導入する。次に、ゲージ対称性から素粒子間の基本相互作用が自然に要請され、更に自発的対称性の破れによって、ヒッグス場、ゲージ場、フェルミ場が質量を獲得する機構を学び、電弱統一理論を理解する。また、粒子の散乱断面積や崩壊率を具体的に計算する手法に触れる。	対面で実施(オンデマンド教材を予習・復習用に提供) 01BC098と同一。 要望があれば英語で授業 学位プログラムは 0AJC041,物理学専攻は01BC098を履修
0AJC043	宇宙物理学	1	2. 0	1 • 2	春AB	水1, 金3	久野 成夫, 大須賀 健	静水圧平衡やビリアル定理、降着・噴出現象といった宇宙流体力学の基礎を学ぶことで、星の構造や星風、降着円盤を理解する。また、天体の形成や進化の概要を理解するため、重力不安定や衝撃波を学ぶ。次に、輻射輸送など電磁波放射と観測の基礎、星間物質(星間ガス、星間ダスト)、宇宙における電波放射機構(自由自由放射、シンクロトロン放射、ダスト熱放射、線スペクトル放射)などについて、その基礎となるところを学ぶ。電波観測装置について基礎的な項目を解説する。	01BC099と同一。 対面で行う。
0AJC045	原子核物理学【	1	1.0	1 - 2	春AB	木2	小沢 顕	原子核物理学の基礎についてわかりやすく解説する。この授業で取り上げる項目は、物質の階層構造、原子核の構成要素、原子核の安定性、質量、大きさ、モーメント、原子核の崩壊(アルファ崩壊、ベータ崩壊、ガンマ崩壊、核分裂)、寿命、放射線(アルファ線、ベータ崩壊、ガンマ線)、弱い相互作用、核力の性質、原子核の模型、原子核反応、熱核反応などである。各テーマでは、まず実験及び、理論の基本的事項の説明を行い、それらがどう理解されているのかを解説する。さらに、各テーマの応用研究及び最近の研究の進展についても解説する。	要望があれば英語で授

0AJC046	原子核物理学Ⅱ	1	1.0	1 • 2	秋AB	木2	江角 晋一,清水則孝	核子多体系としての原子核の性質と、それを取り扱う理論について学ぶ。最近の核構造研究の話題、殻構造、核力などについても取り扱う。また、高エネルギー重イオン衝突反応、クォーク・グルーオン・プラズマ(QGP)相の性質について学ぶ。これまでのハドロン衝突や重イオン衝突実験における、ハード、ソフトな指針を用いて得られた温度、集団運動、エネルギー損失、ハドロン生成などに関する研究結果や計算結果等との比較をおこない、QCD相図やQGP相転移について学ぶ。	01BC107と同一。 要望があれば英語で授 業. 対面
0AJC051	物性物理学	1	2. 0	1 • 2	春AB	火2, 木1	岡田 晋,神田 晶申	固体物性について概観する。火曜は超伝導現象について概説する。木曜は、固体中の電子に関する電子間相互作用に起因する種々の物性現象について、基礎的な部分から議論する。	01BC108, 0AJRJ01と同 一。 対面
0AJC056	プラズマ物理学	1	1. 0	1 • 2	春AB	火4	坂本 瑞樹, 沼倉 友晴	幅広くプラズマ物理学の基礎を学び、身近なプラズマから宇宙プラズマ、核融合プラズマまで、様々なプラズマ現象を理解するための高度な知識を修得する。プラズマの基礎量、透場中の荷電粒子の運動、プラズマ中の基礎過程、プラズマを記述する方程式、プラズマ内の輸送現象と力学的平衡、不安定性やMHD理論、ランダウ共鳴等について講義する。また、プラズマをイオンと電子が自由に飛び回っているような粒子的描像と、様々な情報が波の形で伝わる連続媒質的な描像の両面からプラズマ現象を理解する。	01BC109と同一。 対面授業。ただし状況 によってはオンライン に変更の可能性あり。
0AJC061	宇宙史セミナー!	2	1.0	1	通年	応談	宇宙史コース担当 教員(前期)	宇宙史教育の一環として、異なるグループが共同して、分野横断で修士論文中間報告を中心とした宇宙史教育を行う。各自が行っている研究についての発表と質疑応答を行い、自分の研究分野および他の分野についての知見を深め、修士論文研究をさらに進展させるための一助とする。また、宇宙の歴史の観点から、研究の位置づけについて、再度考える機会を提供する。さらには、自分の専門分野とは異なる分野の人々に対し、明快に説明する能力を養う。博士前期課程1年次での履修を想定している。	01BC250と同一。 対面(オンライン併用 型)
OAJCO62	宇宙史セミナー!!	2	1.0	2	通年	応談	宇宙史コース担当 教員(前期)	宇宙史教育の一環として、異なるグループが共同して、分野横断で修士論文中間報告を中心とした宇宙史教育を行う。各自が行っている研究についての発表と質疑応答を行い、自分の研究分野および他の分野についての知見を深め、修士論文研究をさらに進展させるための一助とする。また、宇宙の歴史の観点から、研究の位置づけについて、再度考える機会を提供する。さらには、自分の専門分野とは異なる分野の人々に対し、明快に説明する能力を養う。博士前期課程2年次での履修を想定している。	01BC251と同一。 対面(オンライン併用 型)
0AJG061	Solid State Physics I	1	1. 0	1 • 2	秋AB	月4	小島 誠治	固体物理学 では格子振動の理論について講述する。具体的には、古典力学に基づき、まず分子振動について学び、次に格子振動の理解へと発展させる。分子振動、格子振動に共通して重要となる点は、力定数行列の固有値・固有ベクトルを解析し、基準振動としての物理的意味を理解することである。分子振動の例として、等核2原子分子、異核2原子分子、二酸化炭素分子について取り上げる。また、格子振動の例として、単位胞が1原子からなる1次元格子、単位胞が2原子からなる1次元格子、単位胞が2原子からなる4次元六方格子、単位胞が2原子からなる蜂巣格子について扱う。授業は英語で行う。	01BC701と同一。 対面 英語で授業。
0AJG062	Solid State Physics II	1	1.0	1 • 2	秋C	月・金4	小島 誠治	固体物理学IIでは固体の電子状態の理論について講述する。具体的には、量子力学に基づき、まず分子の電子状態について学び、次に固体の電子状態の理解へと発展させる。分子の電子状態、固体の電子状態に大通して要となるは、ハミルトニアンの固有値・固有ベクトルを解析し、分子軌道あるいはブロッポ関数としての物理的意味を理解することである。分子の電子状態の例として、水素分子、エチレン分子、ブタジエン分子、ベンゼン分子について取り上げる。また、固体の電子状態の例として、ポリアセチレン、ポリイミノボラン、ボリアセン、グラフェン、六方晶窒化ホウ素について扱う。授業は英語で行う。	01BC702と同一。 対面 英語で授業。 1/27のみ総B112

0AJG063	Solid State Physics III	1	1.0	1 • 2	春BC	月4	小島 誠治	固体物理学IIIでは多電子系の量子力学とその固体物理学への応用について講述する。具体的には、まず第二量子化について学び、次にそれを磁性、超伝導、密度汎関数法へと応用する。磁性については、ハバード模型に基づいた強磁性状態の理論を取り上げる。超伝導については、電子間に引力相互作用のある模型に基づき、ボゴリューボフ理論による解析を行う。密度汎関数法については、ホーヘンベルク・コーンの第一定理、第二定理を証明したうえでこれらに基礎を置くコーン・シャムの方法を説明し、交換相関エネルギー汎関数に対して広く用いられている局所密度近似、一般化密度勾配近似の概要を述べる。授業は英語で行う。	英語で授業。 7/8のみ総B112 01BC703と同一。 対面
OAJME01	ナノ材料工学特論[[1	1.0	1 • 2	秋AB		物質・材料工学クラス担当教員(物	電池、表面化学、第一原理計算、データ駆動型科学等の最先端研究をいくつか取り上げ、研究分野の俯瞰、個々の研究内容、成果	01BC710と同一。 英語で授業。 対面 対面授業を予定してい るが、状況によりオン ライン化も考慮する。

専門科目	<u>(物理学学位プログラム</u> 共	も通)	1				T		T
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJCA01	物理学インターンシッ プI	3	1.0	1 • 2	通年	随時	物理学学位プログ ラム専任教員	企業や研究機関・教育機関における研究員など自らの将来のキャリア・バス形成に資するため、国内外の研究機関や企業などで1週間以上の研修や業務を体験する。実施形態や研修内容について担当教員の事前の確認・指導と事後の報告・認定を必要とする。博士前期課程1年次での履修を想定している。	01BC300と同一。 要望があれば英語で授業、対面(オンライン 併用型)
0AJCA02	物理学インターンシップ11	3	1.0	1 • 2	通年	随時	物理学学位プログラム専任教員	企業や研究機関・教育機関における研究員など自らの将来のキャリア・バス形成に資するため、国内外の研究機関や企業などで1週間以上の研修や業務を体験する。実施形態や研修内容について担当教員の事前の確認・指導と事後の報告・認定を必要とする。博士前期課程2年次での履修を想定している。	018C301と同一。 要望があれば英語で授業、対面(オンライン 併用型)
0AJJA33	ナノテクノロジー特別 講義!	1	1.0	1 • 2	春C	集中	岡田 晋	デバイスの微細化にともない、電子顕微鏡による微細領域の構造 観察および解析が重要になっている。本講義では、電子顕微鏡お よび関連するテーマについて基礎から最先端の研究内容まで幅広 く解説する。本講義は海外の大学より招聘した教員により英語で 行われる。	01BC306, 02BQ207と同一。 英語で授業。 オンライン(オンデマンド型). オンライン (同時双方向型)
OAJJA34	ナノテクノロジー特別 講義II	1	1.0	1 • 2	春C	集中	櫻井 岳暁,末益崇	磁場により物質の透過光や反射光の偏光状態が変化することが知られている。例えば、透過光の偏光状態が変化し、偏光面が回転する現象はファラデー効果、反射光の偏光状態が変化する現象は磁気光学カー効果と呼ばれ、磁性体の物性評価に古くから用いられている。 講義では、磁気と光のテーマについて基礎から最先端の研究内容まで幅広く解説する。本講義は海外の大学より招聘した教員により行われる。	01BC307, 02BQ210と同一。 一。 英語で授業。 講義の実施形態については今後決定する。
OAJJA35	ナノテクノロジー特別 講義III	1	1.0	1 • 2	春C	集中	黒田 眞司	ナノテクノロジーのテーマについて、基礎的事項から最先端の研究内容まで幅広く解説する。本講義は海外の大学より招致した教員により行われる。	01BC308, 02B0208と同一。 英語で授業。 講義の実施形態については今後決定する。
OAJJA36	ナノテクノロジー特別 講義IV	1	1.0	1 • 2	春C	集中	西堀 英治	物質の構造を原子、電子スケールでX線を用いる方法を基礎から理解し、その基礎科学分野での応用例を学ぶ。 本講義は外国人教員により行われる。	
OAJJA37	ナノグリーン特別講義Ⅰ	1	1.0	1 - 2	夏季休業中	集中	笹森 貴裕, 石塚智也, 中村 貴志, 正田 浩一朗	脱温暖化社会、循環型社会、自然共生社会、ならび安全が確保される社会の達成を目指す等のグリーンイノベーションにおける特定のトピックスについて、基礎的内容から専門的・最先端研究の詳細までを幅広く解説する。	01BC311と同一。 対面
OAJJA32	ナノエレクトロニク ス・ナノテクノロジー サマースクール	1	1.0	1 • 2	春C	金3, 4	蓮沼 隆, 大野 裕三	デバイスの高集積化にともない、デバイス構造の微細化が進んでいる。デバイスのサイズが、電子のド・ブロイ波長程度まで微細化されると、量子力学に基づくさまざまな現象が発現する。そのようなナノデバイスおよび材料における最新トピックスについて外部講師を招いて講義する。	01BC314, 02B0204と同一。 対面(オンライン併用型)

0AJJA30	パワーエレクトロニク ス概論III	1	1.0	1 • 2	夏季休業 中				01BC315と同一。 講義の実施形態につい ては今後決定する。
専門科目	(素粒子物理分野)								
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考

市田がこ	/丰粋 구뉴패八맥V								
科目番号	(素粒子物理分野) 料目名	授業 方法	単位数	標準履修年次	実施学期	曜時限	担当教員	授業概要	備考
0AJCB01	素粒子論Ⅰ	1	1.0	1 • 2	秋AB	火2	浅野 侑磨	本講義では、弦理論の基礎的な事柄から始めて、非摂動的な定式 化について解説する。始めに、点粒子・弦の第一量子化について 学び、弦理論が無矛盾に構成されるためには時空の次に制限が かかることなどを見ていく。次に、摂動論を超えた定式化として 提唱されている、弦の場の理論や行列模型などの非摂動的定式化 について概説する。最後は、その内の行列模型に焦点を当てる。M 理論との関係や、行列模型で予想されている行列の自由度からの 時空間の創発について解説する。	西暦奇数年度開講。 01BC350と同一。 対面
0AJCB02	素粒子論[[1	1.0	1 • 2				格子上の場の理論について、その理論的基礎を解説したのち、応用例として、有限温度・密度格子OCDの手法と研究例を紹介する。 見体的には、まず、格子OCD研究の目的、格子場の理論と格子ゲージ理論の基礎、Wilson型とstaggered型格子フェルミオン、格子カイラルフェルミオン、強結合展開、およびホッピングパラメータ展開等について、基礎的な知識の習得と理論的枠組みを理解する。また後半では、有限温度・密度格子OCD研究の概要、相転移と臨界現象、状態方程式、有限密度格子OCDの定式化と符号問題、および符号問題を回避する方法について解説する。	西暦偶数年度開講。 01BC351と同一。 対面
OAJCB06	素粒子論セミナーI	2	1.0	1	春ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー・討論形式で学ぶ。トピックスとして、格子ゲージ理論を用いたハドロンの諸性質・有限密度相転移現象・標準理論を超える理論の探索、また、弦の場の理論・行列模型・ゲージ・重力対応・ブラックホール時空など曲がった時空中の弦理論、などが挙げられる。さらに、関連するテーマとして、超対称性理論等に基づく素粒子現象論、量子力学における基礎的問題、数学や統計基礎論などの周辺学問分野における最新の話題などから選ぶことも可能である。味社子の野における最新の話題などから選ぶことも可能である。味社子の野における最新の話題などから選ぶことも可能である。本社子の下における最新の話題などから選ぶことも可以取れる。その際、教員や他の履修者との質疑応答・討論を通じて基礎的な知識を習得し、適切なテーマの選択することが要求される。	01BC323と同一。 対面(オンライン併用 型)
OAJCBO7	素粒子論セミナーⅡ	2	1.0	1	秋ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー・討論形式で学ぶ。トピックスとして、格子ゲージ理論を用いたハドロンの諸性質・有限密度相転移現象・標準理論を超える理論の探索、また、弦の場の理論・行列模型・ゲージ重力対応・ブラックホール時空など曲がった時空中の弦理論、などが挙げられる。さらに、関連するテーマとして、超対称性理論等に基づく素粒子現象論、量子力学における基礎的問題、数学や統計基礎論などの周辺学問分野における最新の話題などから選ぶことも可能である。素地で当時における最新の話題などから選ぶことも可能である。本地では、自分が興味を持って選択したテーマについて調査・検討を行う。その際、教員から参考文献等の助言を得ながら知識と理解を深めることが要求される。	01BC324と同一。 対面(オンライン併用型)
0AJCB08	素粒子論セミナーIII	2	1.0	2	春ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー・討論形式で学ぶ。トピックスとして、格子ゲージ理論を用いたハドロンの諸性質・有限密度相転移現象・標準理論を超える理論の探索、また、弦の場の理論・行列模型・ゲージ/重力対応・ブラックホール時空など曲がった時空中の弦理論、などが挙げられる。さらに、関連するテーマとして、超対称性理論等に基づく素粒子現象論、量子力学における基礎的問題、数学や統計基礎論などの周辺学問分野における最新の話題などから選ぶことも可能である。素粒子論セミナーIIIでは、自分が選択したテーマについて調査・検討を行った内容を発表し、教員および他の履修者との質疑応答・討論を通じて理解を深める。特に、調査した内容の本質を理解し論理的に発表することが要求される。	01BC325と同一。 対面(オンライン併用型)

OAJCB09	素粒子論セミナーIV	2	1.0	2	秋ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー・討論形式で学ぶ。トピックスとして、格子ゲージ理論を用いたハドロンの諸性質・有限密度相転移現象・標準理論を超える理論の探索、また、弦の場の理論・行列模型・ゲージ/重力対応・ブラックホール時空など曲がった時空中の弦理論、などが挙げられる。さらに、関連するテーマとして、超対称性理論等に基づく素粒子現象論、量子力学における基礎的問題、数学や統計基礎論などの周辺学問分野における最新の話題などから選ぶことも可能である。素粒子は、またいと、発表の結果を踏まえて更なる調査・検討を行い、具体的な研究へと発展させていく。その際、教員および他の履修者との積極的な討論が要求される。	01BC326と同一。 対面(オンライン併用 型)
OAJCB11	高エネルギー物理学セ ミナー!	2	1.0	1	春ABC	金4	素粒子実験担当教 員 (前期)	最先端素粒子物理の実験的研究について、セミナー・討論形式で学ぶ。ハドロン衝突型加速器または電子陽電子衝突型加速器を用いた素粒子実験または理論の研究の最新の話題について、履修者が発表し、他の履修者との質疑応答・討論を通じて理解を深める。トピックスとして、ヒッグス粒子の物理、トップ・クォークの物理、ボトム・クォークの物理、量子色力学(00D)、電弱相互作用、超対称粒子など素粒子標準理論を超える物理、などが挙げられる。さらに、関連するテーマとして、静止標的実験、宇宙線和現象、宇宙素粒子物理学、宇宙物理学などから選ぶことも可能である。適切なテーマの選択、調査した内容の本質を理解に論理的に発表すること、また、討論に積極的に参加すること、他人の発表の聴講と討論への参加、発表の準備を通じて、基礎的な力を養う。博士前期課程1年次での履修を想定している。	01BC331と同一。 要望があれば英語で授業、対面 対面、ただしオンライン併用とする場合もある。
OAJCB12	高エネルギー物理学セ ミナーII	1	1.0	1	秋ABC	金4	素粒子実験担当教 員 (前期)	高エネルギー物理学セミナーIに引き続き、最先端素粒子物理の実験的研究について、セミナー・討論形式で学ぶ。素粒子実験または理論の研究の最新の話題について、履修者が発表し、他の履修者との質疑応答・討論を通じて理解を深める。適切なテーマの選択、調査した内容の本質を理解し論理的に発表すること、また、計論に積極的に参加することにより、学問の内容をより深く理解し、また、それを他人に伝える能力を獲得する。博士前期課程1年次での履修を想定している。	01BC332と同一 要望があれば英語で授業.対面 対面、ただしオンライン併用とする場合もある。
0AJCB13	高エネルギー物理学セ ミナーIII	2	1. 0	2	春ABC	金4	素粒子実験担当教 員 (前期)	最先端素粒子物理の実験的研究について、セミナー・討論形式で学ぶ。ハドロン衝突型加速器または電子陽電子衝突型加速器を用いた素粒子実験または理論の研究の最新の話題について、履修者が発表し、他の履修を含との質疑応答・討論を通じて理解を深める。トピックスとして、ヒッグス粒子の物理、トップ・クォークの物理、ボトム・クォークの物理、最子色力学(QCD)、電弱相互作用、超対称粒子など素粒子標準理論を超える物理、などが挙げられる。さらに、関連するテーマとして、静止標的実験、宇宙素粒子物理学、宇宙物理学などから選ぶことも可能である。東古素粒子物理学、宇宙物理学などから選ぶことも可能である。直切なテーマの選択、調証積極的に参加すること、また、討論に積極的に参加すること、記令に表示である。先行研究の調査によるテーマおよび関連する内容の深い理解、および自身の研究課題との関係性の把握を通じ、総合的な研究力を高める。博士前期課程2年次での履修を想定している。	01BC333と同一。 要望があれば英語で授業: 対面 対面、ただしオンライン併用とする場合もある。
OAJCB14	高エネルギー物理学セ ミナーIV	2	1.0	2	秋ABC	金4	素粒子実験担当教 員 (前期)	高エネルギー物理学セミナーIIIに引き続き、最先端素粒子物理の実験的研究について、セミナー・討論形式で学ぶ。素粒子実験または理論の研究の最新の話題について、履修者が発表し、他の履修者との質疑応答・討論を通じて理解を深める。適切なテーマの選択、調査した内容の本質を理解し無表すること、また、討論に積極的に参助すること、が要求される。自身の研究課題との関連性を理解し、得られた知見を修士論文に反映させる。博士前期課程2年次での履修を想定している。	01BC334と同一。 要望があれば英語で授業、対面、対面、ただしオンライン併用とする場合もある。
0AJCB21	素粒子論特別研究IA	3	3. 0	1	春ABC	随時	素粒子論担当教員(前期)	素粒子物理学(理論分野)の標準的な教科書を輪講形式で講読し、 素粒子物理を研究するための場の量子論の基礎を学ぶ。	01BC377と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)
0AJCB22	素粒子論特別研究IB	3	3. 0	1	秋ABC	随時	素粒子論担当教員(前期)	素粒子物理学(理論分野)の発展に寄与した重要論文を輪講形式で 講読し、素粒子物理を研究するための基礎理論を幅広く学ぶ。	01BC380と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)

									01BC381と同一。
0AJCB23	素粒子論特別研究IIA	3	3. 0	2	春ABC	随時	素粒子論担当教員 (前期)	に続き、格子ゲージ理論、共形場理論、超弦理論等、専門を希望 する分野の基礎的論文を輪講形式で講読する。	要望があれば英語で授業. 対面(オンライン併用型)
0AJCB24	素粒子論特別研究IIB	3	3. 0	2	秋ABC	随時	素粒子論担当教員(前期)	素粒子物理学(理論分野)の研究を行うために、素粒子論特別研究 IIAに続き、格子ゲージ理論、共形場理論、超弦理論等、専門を希 望する分野の最新の論文を輪講形式で講読する。	01BC384と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)
0AJCB31	素粒子実験特別研究IA	3	3. 0	1	春ABC	随時	素粒子実験担当教 員(物理学学位プ ログラム前期)	素粒子実験研究を進める上で必要となる測定器技術、データ処理、物理解析の基礎を習得し、修士論文研究のための基盤となる能力を獲得する。また、先行研究の動向を調査し、自身の研究テーマを決定する。	01BC385と同一。 要望があれば英語で授 業. 対面
0AJCB32	素粒子実験特別研究IB	3	3.0	1	秋ABC	随時	素粒子実験担当教 員 (前期)	素粒子実験研究を進める上で必要となる測定器技術、データ処理、物理解析の基礎を習得し、修士論文のための研究を始める。現在進行中あるいは将来に計画されている素粒子実験のための測定器の開発に従事し、テスト・ベンチによる実験あるいはテスト・ビームを用いた実験を遂行し、検出器の基本性能の評価や本実験に向けた設計に従事する。得られたデータの解析を行い、データ処理の手法を学ぶ。関連して、物理解析の基礎に従事する場合もある。	01BC388と同一。 要望があれば英語で授 業. 対面
0AJCB33	素粒子実験特別研究IIA	3	3. 0	2	春ABC	随時	素粒子実験担当教 員 (前期)	素粒子実験特別研究IAおよびIBに引き続き、修士論文としてまとめるために同研究を進める。 現在進行中あるいは将来に計画されている素粒子実験のための測定器の開発に従事し、テスト・ベンチによる実験あるいはテスト・ビームを用いた実験を遂行し、検出器の基本性能の評価や本実験に向けた設計に従事する。得られたデータの解析を行い、データ処理の手法を学ぶ。関連して、物理解析の基礎に従事する場合もある。	01BC389と同一。 要望があれば英語で授 業. 対面
0AJCB34	素粒子実験特別研究IIB	3	3. 0	2	秋ABC	随時	素粒子実験担当教 員 (前期)	素粒子実験特別研究IA、IB、IIAに引き続き、同研究を発展させて 修士論文としてまとめる。 現在進行中あるいは将来に計画されている素粒子実験のための測 定器の開発に従事し、テスト・ベンチによる実験あるいはテスト・ビームを用いた実験を遂行し、検出器の基本性能の評価や本 実験に向けた設計に従事する。得られたデータの解析を行い、 データ処理の手法を学ぶ。関連して、物理解析の基礎に従事する 場合もある。	要望があれば英語で授
0AJCB40	素粒子論特講 I	1	1. 0	1 • 2	秋B	集中		素粒子分野に関するトピックスについて、外部講師を招いて講義 する。	01BC360と同一。 オンライン(同時双方 向型)
0AJCB41	素粒子論特講Ⅱ	1	1. 0	1 • 2	秋B	集中		素粒子分野に関するトピックスについて、外部講師を招いて講義 する。	01BC361と同一。 対面
0AJCB42	素粒子実験特講I	1	1. 0	1 • 2	秋AB	集中		素粒子分野に関するトピックスについて、外部講師を招いて実験 的側面から講義する。	01BC362と同一。 詳細後日周知
0AJCB43	素粒子実験特講!!	1	1.0	1 • 2	春季休業 中	集中		素粒子分野に関するトピックスについて、外部講師を招いて実験 的側面から講義する。	01BC363と同一。 対面

専門科目(宇宙物理分野)

专门179	日(于由物理分野)								
科目番	号 科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJCCC	1 宇宙物理セミナー!	2	1.0	1	春ABC	応談	大須賀 健,森 正	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離、第一世代天体(宇宙暗黒時代、初代星、初代起新星)、銀河形成・進化(初代銀河、カ学・化学進化、銀河相互作用、サブストクチャ問題)、銀河(星種族、分子雲、超新星残骸、星間磁場)、銀河団(加熱メカニズム、銀河団衝突、重元素分布)、銀河中心核(降着円盤、磁気回転不安定、ジェット、遮蔽トトラス、スターバースト)、ブラックホール、間層、質量降着、アウトフロー・ジェット、初代ブラックホール、超巨大ブラックホール、ブラックホール・バルジ関係、ダウンサイジング)、高エネルギー現象(超新星、ガンマー線パースト、宇宙線粒子加速)、星形成(小質量星、ガンマー線パースト、宇宙線粒子加速、星形成(小質量星、大質量星、連星、星間物質)、蒸星系形成(原始太陽系、原始惑星系円盤、乱流、ダスト、系外惑星系)、宇宙生命(星間有機分子、パイオマーカー)等に関する基礎物理をセミナー形式で学ぶ。	対面(オンライン併用型)

0AJCC02	宇宙物理セミナーII	2	1.0	1	秋ABC	応談	大須賀健,森正夫,矢島秀伸,吉川耕司,福島肇	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離)、第一世代天体(宇宙暗黒時代、初代星、初代星新星)、銀河形成・進化(初代銀河、力学・化学進化、銀河相互作用、サブストクチャ問題)、銀河(星種族、分子雲、超新星残骸、星間磁場)、銀河団(加熱メカニズム、銀河団衝突、重元素分布)、銀河中心核(降着円盤、磁気回転不安定、ジェット、連絡トーラス、スターバースト)、ブラックホール(階層、質量除着、アウトフロー・ジェット、初代ブラックホール。超巨大ブラックホール、ブラックホール・バルジ関係、ダウンサイジング)、高エネルギー現象(超新星、ガンマー線パースト、宇宙線粒子加速)、星形成(小質量呈、大質量呈、連星、星間物質)、惑星系形成(原始太陽系、原始惑星系円盤、乱流、ダスト、系外惑星系)、宇宙生命(星間有機分子、バイオマーカー)等について、先行研究を通じてこれまでの理解を学ぶ。	01BC419と同一。 対面(オンライン併用 型)
0AJCC03	宇宙物理セミナーIII	2	1.0	2	春ABC	応談	大須賀 健,森 正夫,矢島 秀伸,吉川 耕司,福島 肇	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離)、第一世代天体(宇宙暗黒時代、初代星、初代星、初代起新星)、銀河形成・進化(初代銀河、九学・化学進化、銀河相互作用、サブストクチャ問題)、銀河(星種族、分子雲、起新星残骸、星間磁場)、銀河団(加熱メカニズム、銀河団衝突、・運産がトーラス、スターバースト)、ブラックホール、贈暦、質量降着、アウトフロー・ジェット、初代ブラックホール、超巨大ブラ。高エネルギー現象(起新星、ガンマー線バースト、宇宙線粒子加速)、星形成(小質量星、大質量星、連星、星間物質)、惑星系形成(原始太陽系、原始惑星系円盤、乱流、ダスト、系外惑星系)、宇宙生命保室研究の展開を深める。	01BC420と同一。 対面 (オンライン併用 型)
0AJCC04	宇宙物理セミナーIV	2	1.0	2	秋ABC	応談	大須賀 健, 森 正夫, 矢島 秀伸, 吉川 耕司, 福島 肇	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離)、第一世代天体(宇宙暗黒時代、初代星、初代星、初代目数新星)、銀河形成・進化(初代銀河、力学・化学進化、銀河相互作用、サブストクチャ問題)、銀河(星種族、分子雲、超新星残骸、星間磁場)、銀河団(加熟メカニズム、銀河団衝突、重元素分布)、銀河中心核(降着円盤、磁気回転不安定、ジェット、遮蔽トーラス、スターバースト)、ブラックホール(階層、質量降着、アウトフロー・ジェット、初代ブラックホール、超巨大ブラックホール、ブラックホール・バルジ関係、ダウンサイジング)、高エネルギー現象(超新星、ガンマー線バースト、宇宙線粒子加速)、塩形成(小質量星、大質量星、連星間物質)、惑星系形成(原始足形成(小質量星、大質量星、運間物質)、惑星系形成(原始、大陽系、原始惑星系)、宋日生命(星間有機分子、バイオマーカー)等について、新たな問題設定を行い、モデル計算等により理解を深める。	01BC421と同一。 対面(オンライン併用型)
0AJCC11	宇宙観測セミナーI	2	1.0	1	春ABC	応談	久野 成夫, 橋本 拓也, 本多 俊介	電波天文学に関する教科書の輪講・セミナーを行う。内容としては、電波望遠鏡がどのような装置で構成されているか、ヘテロイン受信機の動作原理や分光計の仕組み、主ビーム能率、開口能率、ビームパターンなどアンテナ性能についてと、その評価方法、観測された電波の強度校正法、干渉計の原理やその長所短所、などについてである。また、銀河系、系外銀河、星形成領域、巨大ブラックホールなどの観測的研究や装置開発などの宇宙観測分野に関する研究について、セミナー形式で学ぶ。	01BC426と同一。 対面(オンライン併用型)
0AJCC12	宇宙観測セミナーII	2	1.0	1	秋ABC	応談	久野 成夫, 橋本 拓也, 本多 俊介	宇宙観測セミナー!に続き、電波天文学に関する教科書の輪講・セミナーを行う。内容としては、電波望遠鏡がどのような装置で構成されているか、ヘテロダイン受信機の動作原理や分光計の仕組み、主ビーム能率、開口能率、ビームパターンなどアンテナ性能についてと、その評価方法、観測された電波の強度校正法、干渉計の原理やその長所短所、などについてである。また、銀河系、系外銀河、星形成領域、巨大ブラックホールなどの観測的研究や装置開発などの宇宙観測分野に関する研究について、セミナー形式で学ぶ。また、各自の研究課題についての発表を行う。	01BC427と同一。 対面 (オンライン併用 型)

OAJCC13	宇宙観測セミナーIII	2	1.0	2	春ABC	応談	久野 成夫,橋本 拓也,本多 俊介	宇宙観測分野に関する研究について、セミナー形式で学ぶ。取り上げるトピックスは、銀河(遠方銀河、形成、進化、星形成活動、分類、活動銀河核、構造など)、銀河系(銀河系中心、渦状構造、分子雲形成、星形成、超新星残骸など)、星形成領域(フィラメント形成、高密度コア形成など)、巨大ブラックホール等の観測的研究及び電波望遠鏡、超伝導電波カメラMKID、ヘテロダイン受信機、デジタル分光計、アンテナ鏡面測定法等の観測装置・観測手法などについてである。また、各自の研究課題について発表し議論することで、修士論文の研究を進展させる。	01BC428と同一。 対面(オンライン併用型)
OAJCC14	宇宙観測セミナーIV	2	1.0	2	秋ABC	応談	久野 成夫, 橋本 拓也, 本多 俊介	宇宙観測分野に関する研究について、セミナー形式で学ぶ。取り上げるトピックスは、銀河(遠方銀河、形成、進化、星形成活動、分類、活動銀河核、構造など)、銀河系、銀河系中心、渦状構造、分子雲形成、星形成、超新星残骸など)、星形成領域(フィラメント形成、高密度コア形成など)、巨大ブラックホール等の観測的研究及び電波望遠鏡、超伝導電波カメラMKID、ヘテロダイン受信機、デジタル分光計、アンテナ鏡面測定法等の観測装置・観測手法などについてである。また、各自の研究課題について発表を行うことで、プレゼンテーション能力を高めることを目指す。	01BC429と同一。 対面(オンライン併用 型)
0AJCC21	宇宙物理特別研究IA	3	3. 0	1	春ABC	随時	大須賀 健,森 正夫,矢島 秀伸,吉川 耕司,福島 肇	重力流体力学と輻射流体力学に関係する基礎物理過程を押さえるために、自己重力・流体・輻射を入れた物理系を考え、諸相互作用の共存による現象を解析的、数値的に調べる。プログラミング技術も習得する。	01BC434と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)
0AJCC22	宇宙物理特別研究IB	3	3. 0	1	秋ABC	随時	大須賀健,森正夫,矢島秀伸,吉川耕司,福島肇	宇宙物理特別研究IAに引き続き、重力流体力学と輻射流体力学に関係する基礎物理過程を押さえるために、自己重力・流体・輻射を入れた物理系を考え、諸相互作用の共存による現象を解析的、数値的に調べる。プログラミング技術も習得する。	01BC437と同一。 要望があれば英語で授 業、対面(オンライン 併用型)
0AJCC23	宇宙物理特別研究IIA	3	3. 0	2	春ABC	随時	大須賀 健,森 正夫,矢島 秀伸,吉川 耕司,福島 肇	宇宙物理特別研究IA、IBに継続し、同一テーマを発展させてその成果を論文として取りまとめるために同研究を進める。	01BC438と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)
0AJCC24	宇宙物理特別研究IIB	3	3. 0	2	秋ABC	随時	大須賀 健,森 正夫,矢島 秀伸,吉川 耕司,福島 肇	宇宙物理特別研究IA、IB、IIAに継続し、同一テーマを発展させて その成果を論文として取りまとめる。	01BC441と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)
0AJCC31	宇宙観測特別研究IA	3	3. 0	1	春ABC	随時	久野 成夫,橋本 拓也,本多 俊介	主として電波天文字的手法により銀河・銀河系・遠方宇宙等の観測的研究の基礎を習得し、修士論文の研究を始める。内容的には、電波天文学的手法による銀河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する計画に関する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	01BC442と同一。 要望があれば英語で授 業 対面(オンライン 併用型)
0AJCC32	宇宙観測特別研究IB	3	3.0	1	秋ABC	随時	久野 成夫,橋本 拓也,本多 俊介	宇宙観測特別研究IAに引き続き、主として電波天文字的手法により銀河・銀河系・遠方宇宙等の観測的研究の基礎を習得し、修士論文の研究を進める。内容的には、電波天文学的手法による銀河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	018C445と同一。 要望があれば英語で授 業 対面(オンライン 併用型)
OAJCC33	宇宙観測特別研究IIA	3	3. 0	2	春ABC	随時	久野 成夫, 橋本 拓也, 本多 俊介	宇宙観測特別研究IAおよびIBを発展させ、成果を修士論文としてまとめるために同研究を進める。内容的には、電波天文学的手法による鏡河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する計画に関する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	01BC446と同一。 要望があれば英語で授 業、対面(オンライン 併用型)
0AJCC34	宇宙観測特別研究IIB	3	3. 0	2	秋ABC	随時	久野 成夫, 橋本 拓也, 本多 俊介	宇宙観測特別研究IA、IB、IIAに継続し、同研究を発展させてその成果を修士論文としてまとめる。内容的には、電波天文学的手法による銀河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する計画に関する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	01BC449と同一。 要望があれば英語で授 業・対面(オンライン 併用型)
0AJCC41	宇宙物理特講【	1	1.0	1 • 2	秋B	集中		宇宙物理学分野に関するトピックスについて、外部講師を招いて講義する。	01BC369と同一。 対面 非常勤講師担当科目

0AJCC4	2 宇宙物理特講 [[1	1.0	1 • 2	秋B	集中	宇宙物理学分野に関するトピックスについて、外部講師を招いて 0180370と同一。 詳細後日周知
0AJCC4	3 宇宙観測特講 I	1	1.0	1 • 2	春季休業中	集中	宇宙観測分野に関するトピックスについて、外部講師を招いて講 義する。 詳細後日周知 オンラ イン(同時双方向型)
0AJCC4	4 宇宙観測特講Ⅱ	1	1.0	1 • 2	夏季休業 中	集中	宇宙観測分野に関するトピックスについて、外部講師を招いて講 01BC372と同一。 義する。 詳細後日周知 対面 非常勤講師担当科目

専門科目	(原子核物理分野)		,	,					
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJCD01	原子核理論[1	1.0	1 • 2	春AB	水2	中務 孝	原子核およびフェルミ粒子多体系において必要とされる、非相対 論的量子多体系の理論とその基礎的な応用について学び、関連分 野の原著論文等を読むための基礎を習得する。講義では、原子核 構造およびフェルミ粒子多体系を微視的に理解するために必要な 量子多体論を基本的なレベルから解説する。黒板での板書を基本 とした講義を中心として、演習的な内容も一部に含む。原子核の 基本的性質、量子多体論の基礎、(対凝縮相に対する)平均場理 論、原子核多体問題とブルックナー理論などを解説する。	西暦奇数年度開講。 01BC400と同一。 対面、ただしオンライン併用とする場合もある。manabaに情報を随時掲載するので、そちらを参照。
0AJCD02	原子核理論[[1	1.0	1 • 2				核子多体系としての原子核や電子多体系としての原子・分子・固体のようなフェルミ粒子多体系の基礎的な性質を論じると共に、これらの系を理解するためによく用いられる平均場理論について説明する。まず、物質の基底状態を調べるためのHartree-Fook法や密度汎関数理論について解説する。さらに、物質の励起状態や応答、ダイナミクスを記述するための時間依存平均場理論について学ぶ。また、これらの理論を応用した際に明らかになる量子多体系の基礎的性質についても解説する。	西暦偶数年度開講。 01BC401と同一。 2025年度開講せず。 対面 ただしオンライン併用 とする場合もある。
OAJCD06	原子核理論セミナー【	2	1.0	1	春ABC	応談	原子核論担当教員(前期)	原子核物理学の理論的なアプローチの方法を扱う教科書について 輪誌・セミナーを行う。原子核の微視的性質を理解するための数 学的な手法特にGreen関数について理解する。また、それらの適用 例を通して原子核の基本的な性質を理解する。Green関数はGell- Mann and Low の定理に基づいて導入し、オブザーバブルの計算例 やLehmann 表示の導入を通してGreen関数の物理的な意味を理解する。そのうえで、系統的な摂動計算のためにWick の定理の証明を 理解する。そして、Feynman 図形の導入とDyson 方程式、自己エ ネルギー部分を学ぶ。応用例として、Hartree-Fock平均場近似の 導出を行い、また、縮退電子ガスの基底状態のエネルギーを計算 する。	01BC478と同一。 対面 ただしオンライン併用 とする場合もある。
0AJCD07	原子核理論セミナー!!	2	1.0	1	秋ABC	応談	原子核論担当教員(前期)	原子核理論セミナーIに続いて、原子核物理学の理論的なアプローチの方法を扱う教科書について輪読・セミナーを行う。原子核の動的な性質として振動運動の微視的な理解を進める。Green関数に基づいた方法により原子核の線形応答を計算することで、振動運動のエネルギーを計算する方法を理解する。核力の一般的な特徴を学習した上で、平均場模型に基づいて核内対相関の効果を学ぶ。振動運動を扱うTamm-Dancoff 近似や乱雑位相近似(RPA)を、運動方程式の線形化から導出する。また、Green関数の形式において分極関数の極に着目することでもRPA方程式を導出し、その物理的な内容について理解する。	01BC479と同一。 対面 ただしオンライン併用 とする場合もある。
0AJCD08	原子核理論セミナーIII	2	1.0	2	春ABC	応談	原子核論担当教員(前期)	原子核物理学の理論的なアプローチの方法を扱う教科書について 輪読・セミナーを行い、原子核の基本的な性質について理解す る。原子核の性質を観測するうえで必要となる原子核からの電磁 波 (ヶ線) の放射について理解する。原子核の電磁 100 を	01BC480と同一。 対面 大だしオンライン併用 とする場合もある。

OAJCDO9	原子核理論セミナーIV	2	1.0	2	秋ABC	応談	原子核論担当教員	原子核物理学の理論的なアプローチの方法を扱う教科書について 輸読・セミナーを行い、原子核の多様な性質について理解する。 現象論的な一粒子(球形、変形)ボテンシャルによる描像から、有 効核力に基づく微視的なHartree-Fook-Bogol iubov法による さらに、核内対相関を考慮したHartree-Fook-Bogol iubov法による 一般化された平均場描像により原子核の基底状態の性質を理解す る。さらに、原子核の特的な運動である核分裂について、液滴 模型や二中心模型による記述を学び、微視的な時間依存Hartree- Fook (TDHF) 法を理解する。	018C481と同一。 対面 ただしオンライン併用 とする場合もある。
OAJCD11	原子核実験物理学[1	1.0	1 • 2	春AB	火5	_	原子核物理について、実験的側面から講義する。前半では、低エネルギーから高エネルギー原子核の実験的研究において重要な役割を果たす、真空技術、イオン源技術、加速器物理およびイオンビーム光学について講義する。また原子核実験でよく用いられる代表的な真空排気装置、イオン源及び加速器などの実験機器について、具体的な例をあげて解説する。後半では、放射線と物質の相互作用、放射線防護、放射線検出器の原理について解説する。	01BC405と同一。 対面 ただしオンライン併用 とする場合もある。 manabaに情報を随時掲載するので、そちらを 参照。
0AJCD12	原子核実験物理学Ⅱ	1	2. 0	1 • 2	秋ABC	火5 集中	小沢 恭一郎, 中條	原子核物理について、実験的側面から講義する。前半では、現代の原子核実験で必要となる放射線計測に関わる解析技術、特に、データ処理に関連する統計処理や誤差論について解説する。実際の実験を例に挙げて講義する。後半では、現代の原子核実験で必須とされるエレクトロニクス技術について解説する。アリロの路なが回路、デジタル回路、さらに両者を組み合わせたトリガー回路などの回路技術について、具体例に沿って講義する。さらに、近年特に重要となってきた計算機シミュレーションについて解説する。GEANTなどの粒子検出器シミュレーションコードを導入/解説し、検出器の設計や実験計画立案について学ぶ。	018C497と同一。 集中講義については受 講者の都合に配慮して 日程を後日周知する 講義の実施形態につい てはな。。
OAJCD15	原子核物理特論	1	1.0	1 · 2	春C	火4, 5		原子核物理学における最先端の研究成果や興味ある話題についてわかりやすく解説する。原子核物理の現状と動向を俯瞰するオムニバス形式の授業とする。	原子核理論・実験分野の大学院生は全員受講すること。 018C499と同一。 対面 ただしオンライン併用 とする場合もある。
OAJCD16	原子核実験セミナー!	2	1.0	1	春ABC	応談		原子核物理学の基礎を理解する目的で教科書や論文を用いて輪 読・セミナーを行う。まず、物質の階層構造における原子核の位 置付けを理解するために、原子と原子核、原子核とハドロンの構 造の違いを定量的に理解する。その上で、液滴模型や統計を理解する。 数模型など様々な原子核模型と表現される原子核の特徴を理解す る。データ処理技術、エレクトロニクス技術についても学ぶ。下 位の階層構造からの理解を進めるために、クォーク模型やハドロ ンの構造についても学ぶ。輪講形式で大学院生に適宜発表させる ことによって議論の仕方やプレゼンテーション技術の習得も目指 す。	01BC489と同一。 対面(オンライン併用 型)
OAJCD17	原子核実験セミナーⅡ	2	1.0	1	秋ABC	応談		原子核物理学の実験技術に関する教科書や論文を用いて輪読・セミナーを行う。実験室で直面する具体的な課題について基礎的な教科書レベルから最新の論文まで適宜参照しながら議論して理解を深める。 7 終や B 線など放射線の物質との相互作用、またそれらの検出技術、イオンビーム物質分析技術や加速器技術、加速器質量分析、MWPCやTPCなどの検出器についても取り上げる。輪講形式で大学院生に適宜発表させることによって議論の仕方やブレゼンテーション技術の習得も目指す。	01BC490と同一。 対面(オンライン併用型)
OAJCD18	原子核実験セミナーIII	2	1.0	2	春ABC	応談	原子核実験担当教	原子核物理学の核反応に関する教科書や論文を用いて輪読・セミナーを行う。原子核衝突の描像が衝突エネルギーとともにどのように変化するかを原子核のサイズ、固有時間やフェルミ運動量などと比較すどと優突時間や衝突によって持ち込まれる角運動量などと比較することによって、反応描像を理解する。相対論的効果や量子力学効果について議論し、高エネルギー原子核・原子核衝突実験によるクォーク・グルオンブラズマ生成や不安定核ビーム生成について理解する。輪講形式で大学院生に適宜発表させることによって議論の仕方やプレゼンテーション技術の習得も目指す。	01BC491と同一。 対面(オンライン併用 型)

OAJCD19	原子核実験セミナーIV	2	1.0	2	秋ABC	応談	原子核実験担当教員(前期)	原子核物理学の実験技術・解析技術に関する教科書や論文を用いて輪読・セミナーを行う。より実践的な観点から最先端の原子核物理学の研究状況を理解することに重点を置き、高エネルギー原子核・原子核衝突実験によって生成されるクォーク・グルオンプラズマの物性を理解するための物理解析や、不安定核ビームを用いた不安定核の核構造や宇宙元素合成の手法について学ぶ。輪講形式で大学院生に適宜発表させることによって議論の仕方やブレゼンテーション技術の習得も目指す。	01BC492と同一。 対面(オンライン併用 型)
0AJCD21	原子核論特別研究IA	3	3. 0	1	春ABC	随時	原子核論担当教員(前期)	有限量子多体系としての原子核を理解する上で必要な基本的理論 について、その発展と応用に向けた研究のための多粒子系の量子 論の基礎を学ぶ。	01BC510と同一。 対面 ただしオンライン併用 とする場合もある。
0AJCD22	原子核論特別研究IB	3	3. 0	1	秋ABC	随時	原子核論担当教員(前期)	有限量子多体系としての原子核を理解する上で必要な基本的理論 について、その発展と応用に向けた研究のための多粒子系の量子 論の基礎を学ぶ。	01BC513と同一。 対面 ただしオンライン併用 とする場合もある。
0AJCD23	原子核論特別研究IIA	3	3. 0	2	春ABC	随時	原子核論担当教員(前期)	原子核及び関連する有限量子系の理論について、セミナー形式で 行う。	01BC514と同一。 対面 ただしオンライン併用 とする場合もある。
0AJCD24	原子核論特別研究IIB	3	3. 0	2	秋ABC	随時	原子核論担当教員 (前期)	原子核及び関連する有限量子系の理論について、セミナー形式で 行う。	01BC517と同一。 対面 ただしオンライン併用 とする場合もある。
OAJCD31	原子核実験特別研究IA	3	3.0	1	春ABC	随時	原子核実験担当教員(前期)	修士論文の研究を開始するにあたって、適切な研究テーマを選ぶために必要な原子核物理学や実験技術に関して確認し、各自の状況に適したアドバイス・指導を行う。内容としては、初期宇宙の物質相や宇宙元素合成など宇宙の歴史に関わる研究や加速器質量分析など測定器技術・加速器技術を活用する広範な原子核物理学に関して、研究の実践、指導を行い、以下の各課題について論文指導を行う。	01BC518と同一。 対面(オンライン併用 型)
0AJCD32	原子核実験特別研究IB	3	3.0	1	秋ABC	随時	原子核実験担当教員(前期)	原子核実験特別研究IAに引き続き、修士論文の研究を展開するために必要な原子核物理学や実験技術の理解を深めると同時に具体的に研究に着手できるようにアドバイス・指導を行う。内容としては、初期宇宙の物質相や宇宙元素合成など宇宙の歴史に関わる研究や加速器質量分析など測定器技術・加速器技術を活用する広衛な原子核物理学に関して、研究の実践、指導を行い、以下の各課題について論文指導を行う。	01BC521と同一。 対面(オンライン併用 型)
0AJCD33	原子核実験特別研究IIA	3	3. 0	2	春ABC	随時	原子核実験担当教員(前期)		01BC522と同一。 対面(オンライン併用 型)
0AJCD34	原子核実験特別研究IIB	3	3. 0	2	秋ABC	随時	原子核実験担当教員(前期)	修士論文の作成に重点を移し、先行研究や理論計算との比較など 議論の進め方についてアドバイス・指導を行う。先行研究の取り 扱い方や引用の仕方など論文の書き方についても指導する。内容 としては、初期宇宙の物質相や宇宙元素合成など宇宙の歴史に関 わる研究や加速器質量分析など測定器技術・加速器技術を活用す る広範な原子核物理学に関して、研究の実践、指導を行い、以下 の各課題について論文指導を行う。	01BC525と同一。 対面(オンライン併用 型)
0AJCD40	原子核理論特講Ⅰ	1	1.0	1 • 2	夏季休業 中	集中		原子核理論に関するトピックスについて、外部講師を招いて講義する。	詳細後日周知
0AJCD41	原子核理論特講Ⅱ	1	1.0	1 • 2	春季休業中	集中		原子核理論に関するトピックスについて、外部講師を招いて講義 する。	01BC411と同一。 対面
0AJCD42	原子核実験特講Ⅰ	1	1.0	1 • 2	春季休業中	集中		原子核実験に関するトピックスについて、外部講師を招いて講義する。	OIBC412と同一。 対面 Room D413, Institute of Natural Sciences Building D
0AJCD43	原子核実験特講Ⅱ	1	1.0	1 • 2	春季休業 中	集中		原子核実験に関するトピックスについて、外部講師を招いて講義 する。	01BC413と同一。 英語で授業。 対面

専門科目(物性物理分野)

2	専門科目	(物性物理分野)				1		T		
2	科目番号	科目名		単位数	履修	実施学期	曜時限	担当教員	授業概要	備考
電子の学の主なシーションに関うる場合の場合を行う。 1 第一型電子を設定する 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OAJCE01	物性理論I	1	1.0	1 • 2	春AB	月1		どの他の自然科学分野、さらには機械学習や深層学習などの情報 科学分野ともつながり、学際的な先端分野として飛躍的な発展を 遂げている。本講義では、物理学の基礎概念と生物機能の基礎知 識を講義し、分子シミュレーション、第一原理計算などのコン ピュータシミュレーションによる生体内分子や物質の構造・機能	対面(状況医よって動画配信)。要望があれば英語で投棄。 西暦奇数年度開講。 018622と同一。 要望があれば英語で投棄 メール・シール・シール・シール・シール・シール・シール・シール・シール・シール・シ
April	0AJCE02	物性理論II	1	1.0	1 • 2				電気化学シミュレーションに関する導入的講義を行う。基礎的な概念の説明からはじめて、燃料電池や蓄電池などを扱う固液界面 リである。1. 第一原理電子状態計算の基礎、2. 電気化学の熟力 ヴ、3. 溶液論、4. 電気化学を扱うため新しいシミュレーション技術、5. 最近の話題: 燃料電池などのエネルギー関連材料の研究紹介. 後半(溝口担当):後半ではトポロジカル絶縁体とその周辺の話題に関する導入的講義を行う。シンプルな具体例を用いて、「トポロジカル数」、「バルク境界対応」といった、トポロジカル相を理解する上で重要な概念を説明する。講義計画は以下の通りである。1. 基礎的概念の導入、2. トポロジカル絶縁体(I): トポロジカル機縁体の輸送現象・電磁場応答、4. トポロジカル絶縁体の輸送現象・電磁場応答、4. トポロジカル絶縁体	01BC623と同一。 西暦偶数年度開講。 01BC623と同一。 要望があれば英語で授 業 対面 対面授業、状況によっ てはオンライン(オン
CICR用するための知識を習得する。具体的には、量子マスター方 REC RET RET	0AJCE03	物性理論[[[1	1.0	1 • 2	秋AB	月4		依存した物性が発現することが知られている。このことは、幾何構造制御による物性の制御が可能であることを示しており、幾何構造制御による新たな機能を有する材料や物質の創生が可能であることを示している。本講義では、フラーレンやカーボンナノチューブ等の炭素からなるナノ物質を例として、幾何構造と物性の間の相関を紹介し、さらに最近注目を集めている新しい低次元物質やナノ物質について、その構造と物性現象の間の相関が生み	西暦奇数年度開講。 01BC624、0AJRH01と同一。 要望があれば英語で授業 対面(状況により変更
OAJCE05 表面・ナノ構造物性特 1 1.0 1・2 の講義を行う。固体の電子論、固体表面におけるシュレーディンカー方程式の境界条件と表面状態、光と物質の相互作用、固体表面におけるMaxwell方程式解の境界条件、表面・男面・多層膜・ナノ構造における電磁固有モード・集団励起モード、表面プラズモン、モード間結合、利得、メタマテリアル	0AJCE04	物性理論IV	1	1.0	1 • 2				に応用するための知識を習得する。具体的には、量子マスター方程式や非平衡Green 関数を具体例を元に使いこなすことを目指す。講義計画は以下の通り:1. 非平衡系の一般的性質 2. 量子マスター方程式 3. 量子ドット伝導 4. 電流ゆらぎ 5. 完全計数統計 6. 閉経路積分 7. 非平衡Green関数 8. 電流の表式 9. 時間依	01BC625と同一。
する。前半では、イオン二次電池の起電力を電気化学ポテンシャ 01BC567と同一。 ルとギブスの自由エネルギーを用いて理解する。後半では、オン サーガーの相反定理と定常熱力学の基礎を講義した後、熱電素子 の定常熱力学と熱電材料の設計指針をポルツマン方程式を使いな	0AJCE05		1	1.0	1 • 2				の講義を行う。固体の電子論、固体表面におけるシュレーディンガー方程式の境界条件と表面状態、光と物質の相互作用、固体表面におけるMaxwell力程式解の境界条件、表面・界面・多層膜・ナノ構造における電磁固有モード・集団励起モード、表面プラズモ	2025年度開講せず。
	0AJCE10	強相関物性特論IA	4	1.0	1 • 2				する。前半では、イオン二次電池の起電力を電気化学ポテンシャルとギブスの自由エネルギーを用いて理解する。後半では、オンサーガーの相反定理と定常熱力学の基礎を講義した後、熱電素子の定常熱力学と熱電材料の設計指針をポルツマン方程式を使いな	01BC567と同一。

0AJCE11	強相関物性特論IB	4	1.0	1 • 2				強相関電子物質の物性の基礎を理解することを目標とする。前半では電気伝導をドルーデモデル、ゾンマーフェルトモデル、バンド理論を用いて理解する。また、量子力学の復習をしながら、局在モデルから遍歴電子、多電子系の基礎を理解する。後半では振動と波動の量子論を学んだ後、第二量子化と多電子系のハミルトニアンとしてのハバードモデルを理解する。最後に二重交換相互作用の問題を具体的に解くことで強相関物質の理解を深める。	西暦偶数年度開講。 01BC568と同一。 対面
0AJCE12	強相関物性特論IIA	4	1.0	1 • 2	春AB	金6	守友 浩, 丹羽 秀治	エネルギー現象の基礎となる電気化学の原理と実験手法を習得する。Wileyのelectrochemical methodを輪講する。	教室:自然系B602 西暦奇数年度開講。 01BC569と同一。 対面
0AJCE13	強相関物性特論IIB	4	1.0	1 • 2	秋AB	金6	丹羽 秀治,守友浩	放射光を用いたX線分光法の基礎を理解することを目的とする。具体的には以下の内容を輪講形式で学ぶ。前半では、放射光発生の原理と放射光のエネルギー切り出しに必要な X 線光学系、および、測定に使用する検出器について理解する。後半では、X 線吸収(XAFS)、共鳴非弾性 X 線散乱、X 線光電子分光方法など、放射光を用いるX線分光法を取り扱う。	西暦奇数年度開講。
0AJCE16	半導体物理学特論IA	1	1.0	1 • 2				低次元半導体の基礎について、光物性の観点から講義または輪講を行う。主な講義内容は、半導体の結晶構造、結晶中の電子状態とバンド構造、フォノン、半導体へテロ構造、量子井戸と様々な低欠元系の電子状態、k・p理論と光学遷移、電子・光子相互作用、Kramers-Kronigの関係式、光学応答関数、価電子帯のKaneモデル、量子井戸のバンド間遷移、光学遷移の選択則、等である。その他、発展的内容について、原著論文の講読によって学ぶ。	西暦偶数年度開講。 01BC573と同一。 講義の実施形態につい ては今後決定する。
0AJCE17	半導体物理学特論IB	1	1.0	1 - 2				半導体量子構造に特有の次元性に依存した無磁場での量子現象の 光物性に関する講義または輪講を行う。無磁場もしくは弱磁場下 の半導体ナノ構造において見られるスピンと光の関わる興味深い 現象について取り上げる。主な講義内容は、光の偏向とスピン、 ブロッホ球とスピノールの時間発展、ダイヤモンドNVセンター、 スピン軌道相互作用、スピンホール効果、時間反転・空間反転・ クラマース縮退、六方格子とパンドギャップ、グラフェンと遷移 金属ダイカルコゲナイドの光物性、スピン・パレー結合、等であ る。発展的内容を関連原著論文の講読を通じて学ぶ。	西暦偶数年度開講。 01BC574と同一。 講義は対面で実施する
OAJCE18	半導体物理学特論IIA	1	1.0	1 • 2	春AB	水2	野村 晋太郎, 池沢道男		西暦奇数年度開講。 01BC575と同一。 対面
OAJCE19	半導体物理学特論IIB	1	1.0	1 • 2	秋AB	水2	野村 晋太郎, 池沢 道男	半導体量子構造に特有の次元性に依存した強磁場中の量子現象の 光物性に関する講義または輪講を行う。強磁場下の半導体ナノ構 造において見られるスピンと光の関わる興味深い現象について取 り上げる。主な講義内容は、磁場中二次元自由電子の運動の古典 論と量子論、ランダウ準位占有数とチャーン数、ホール係数の測 定と電子移動度、整数量子ホール効果、強破場中電子系の発光、 量子ホール端状態とその光検出、分数量子ホール効果とその光検 出、複合粒子描像、等である。発展的内容を関連原著論文の講読 を通じて学ぶ。	西暦奇数年度開講。 0180576と同一。 対面
0AJCE20	物性理論セミナーI	2	1.0	1	春ABC	応談	物性理論担当教員(前期)	適切に選定されたテーマに従って当該分野の専門書やレビュー論 文などを用いて学び、その結果をセミナー形式で発表・議論する ことにより理解を深める。具体的には、理論物理学の手法を用い て、トポロジカル物性、非平衡・動的制御、ナノ量子物性などの 課題を学ぶ。また計算物質科学の手法を用い、ナノスケール物 質、生命関連物質、表面・界面物性などの課題を学ぶ。外部から の講師によるセミナー、研究会などにも積極的に参加させ研究発 表のスキルを学ばせる。	01BC577と同一。 対面(オンライン併用 型)

0AJCE21	物性理論セミナーII	2	1.0	1	秋ABC	応談	物性理論担当教員(前期)	物性理論セミナーIに引き続き適切に選定されたテーマに従って当該分野の専門書やレビュー論文などを用いて学び、その結果をセミナー形式で発表・議論することにより理解を深める。具体的には、理論物理学の手法を用いて、トポロジカル物性、非平衡・動的制御、ナノ量子物性などの課題を学ぶ。また計算物質科学の手法を用い、ナノスケール物質、生命関連物質、表面・界面物性などの課題を学ぶ。必要に応じて計算機による数値計算を用いた検証なども行う。	01BC578と同一。 対面(オンライン併用型)
0AJCE22	物性理論セミナーIII	2	1.0	2	春ABC	応談	物性理論担当教員(前期)	物性理論セミナーIIに引き続き、修士論文のテーマに関連する当該分野の専門書やレビュー論文などを用いて学び、その結果をセミナー形式で発表・議論することにより理解を深める。具体的には、理論物理学の手法を用いて、トポロジカル物性、非平衡・動的制御、ナノ量子物性などの課題を学ぶ。また計算物質科学の手法を用い、ナノスケール物質、生命関連物質、表面・界面物性などの課題を学ぶ。必要に応じて計算機による数値計算を用いた検証なども行う。	01BC579と同一。 対面(オンライン併用 型)
0AJCE23	物性理論セミナーIV	2	1.0	2	秋ABC	応談	物性理論担当教員(前期)	物性理論セミナーIIIに引き続き、修士論文のテーマに関連した当該分野の専門書やレビュー論文などを用いて学び、その結果をセミナー形式で発表・議論することにより理解を深める。具体的には、理論物理学の手法を用いて、トポロジカル物性、非平衡・動的制御、ナノ量子物性などの課題を学ぶ。また計算物質科学の手法を用い、ナノスケール物質、生命関連物質、表面・界面物性などの課題を学ぶ。学んだ基礎理論を分かりやすくモノグラムとしてまとめることも指導する。	01BC580と同一。 対面(オンライン併用型)
0AJCE24	物性実験セミナーI	2	1.0	1	春ABC	木5	物性実験担当教員(前期)	学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス 光ナノ物性などの物性物理学の実験分野の発表について	01BC585と同一。 対面
0AJCE25	物性実験セミナーⅡ	2	1.0	1	秋ABC	木6	物性実験担当教員(前期)	物性物理学の実験的側面を、セミナー形式で勉強する。大学院生による物性実験の研究発表を聞くことによって、半導体物性、磁性物性、表面物性、光誘起物性、低温物性、構造物性などの物性物理学の実験分野について、自分の研究とは異なる分野の研究がどのような目的で、どのような手法で行われているのかを理解する。	01BC586と同一。 対面
0AJCE26	物性実験セミナーIII	2	1.0	2	春ABC	木5	物性実験担当教員	物性物理学の実験的側面を、セミナー形式で勉強する。磁性物理 学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニ クス、光ナノ物性などの物性物理学の実験分野の発表を理解し、 疑問点を質問する能力を身につける。	01BC587と同一。 対面
0AJCE27	物性実験セミナーIV	2	1.0	2	秋ABC	木6	物性実験担当教員 (前期)	物性物理学の実験的側面を、セミナー形式で勉強する。半導体物性、磁性物性、表面物性、光誘起物性、低温物性、構造物性などの物性物理学の実験分野の大学院生による研究発表を聞くことによって、自分のブレゼン能力を高める。また、発表の要点を理解し、議論する能力を高める。	01BC588と同一。 対面
0AJCE28	構造科学特論IA	4	1.0	1 • 2				放射光を用いた回折物理学を基盤とした構造計測法とデータ解析 手法について学習する。また固体物理の基礎を理解し、構造と物 性の相関について検討する。原子モデルを用いた構造解析、フー リエ変換に基づく電子密度解析、など基本的なX線回折の解析法に ついても学習するとともに、金属、半導体、誘電体など基本的な 物性と構造との相関の理解を深める。	西暦偶数年度開講。 0180617と同一。 オンライン(同時双方 向型)
OAJCE29	構造科学特論IB	4	1.0	1 • 2				放射光を用いた回折物理学を基盤とした構造計測法とデータ解析 手法について理解する。また固体物理の基礎を理解し、構造と物 性の相関について検討する。原子モデルを用いた構造解析、多極 子モデルを用いた電子密度解析、X線回折に基づく波動関数解析な ど高度な解析法についても学習するとともに、電荷密度波にとも なうパイエルス転移など構造と物性が相関する多彩な相転移現象 の理解などを進める。	西暦偶数年度開講。 01BC618と同一。 対面
OAJCE30	構造科学特論IIA	4	1.0	1 · 2	春AB	水2	西堀 英治, 笠井	実験室X線光源からシンクロトロン放射に至るX線源と検出器、光学系について理解する。制動放射からのX線の発生。X線管球、ローター型発生装置、微小焦点型発展装置を学んだ後に、高速に近い電子のシンクロトロン放射について学ぶ。実験室におけるX線分光の原理を学習し、ブラッグブレンターノ法などの実験装置までのデザインを説明を可能とする知識を習得する。	西暦奇数年度開講。 01BC619と同一。 対面

0AJCE31	構造科学特論IIB	4	1.0	1 • 2	秋AB	水2	西堀 英治, 笠井	シンクロトロン放射からX線自由電子レーザーに至る最先端X線源と検出器、光学系について理解する。制動放射からシンクロトロン放射、アンジュレーター放射、自由電子レーザーに至る電子ビームの動力学と発生原理を理解し、その光の特性を理解する。さらにそれらのX線領域の光を加工する光学系について動力学的回折理論に基づき理解するとともにビームラインから実験装置までのデザインを説明を可能とする知識を習得する。加えてナノ就航技術などのX線光学の最先端知識にも触れる。	西暦奇数年度開講。 01BC620と同一。 対面
0AJCE32	低温物理学!	1	2. 0	1 • 2				前半では、基礎・応用両面の研究が近年急速に発展しているナノカーボン(カーボンナノチューブやグラフェン)と原子層物質について、電気伝導を中心にした講義を行う。後半では、サイズがミクロンのオーダーよりも小さな金属や半導体において、電子の量子力学的性質(粒子性、波動性)が顕在化した結果生じるメゾスコピック量子輸送現象について、特に電子の粒子性に焦点をあてて解説する。	西暦偶数年度開講。 01BC626と同一。 対面 授業資料はmanabaにて 配布する。 低温物理学IAおよびIB を修得済みの場合は履 修侃温物理学IA、IBのう ち1科目のみを修得済 みの場合は担当教員に 事前に相談すること。
0AJCE33	低温物理学!!	1	2. 0	1 • 2	春AB	月5,6	神田 晶申	前半では、典型的な低温現象であり、量子現象として重要な研究 対象である超伝導について、重要な概念、現象及び応用を解説す る。後半では、サイズがミクロンのオーダーよりも小さな金属や 半導体において、電子の量子力学的性質(粒子性、波動性)が顕在 化した結果生じるメジスコピック量子輸送現象について、特に電 子の波動性に焦点をあてて解説する。	西暦奇数年度開講。 01BC627と同一。 対面 授業資料はmanabaにて 配布する。 低温物理学IIAおよび IIBを修得済みの場合 は履修不可。 に温物理学IIA、IIBの うち1科目のみを修得 済みの場合は担当教員 に事前に相談すること。
0AJCE41	物性理論特別研究IA	3	3.0	1	春ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考書を輪講形式で講読し、研究を実施するための基礎と素養を学ぶ。購読する論文の選定に関する考え方とその方法論、輪講の進め方と準備する資料などに関する基礎的な手法を指導する。	01BC593と同一。 要望があれば英語で授 業.対面(オンライン 併用型)
0AJCE42	物性理論特別研究IB	3	3.0	1	秋ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考書を輪講形式で講読し、研究を実施するための基礎と素養を学ぶ。受講者の準備した資料に基づき参考書・論文の主張を正確に把握する方法を指導する。	01BC596と同一。 要望があれば英語で授 業. 対面(オンライン 併用型)
OAJCE43	物性理論特別研究IIA	3	3.0	2	春ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考書を輪講形式で講読し、研究を実施するための基礎と素養を学ぶ。修士論文の課題に沿った関連論文の選定方法と、論文の主張に対する批判的な視点での検証を行うよう指導する。	018C597と同一。 要望があれば英語で授 業.対面(オンライン 併用型)
OAJCE44	物性理論特別研究IIB	3	3.0	2	秋ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考書を輪講形式で講読し、研究を実施するための基礎と素養を学ぶ。修士論文の課題に関連する分野にとどまらず、研究の波及効果なども含めた広い観点での文献調査を行うよう指導する。	01BC608と同一。 要望があれば英語で授 業.対面(オンライン 併用型)
OAJCE51	物性実験特別研究IA	6	3.0	1	春ABC	随時	物性実験担当教員(前期)	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野の実験を行うために必要な知識を習得し、基本的な実験技術を身につけて、実験を行う。	01BC609と同一。 要望があれば英語で授 業. 対面
0AJCE52	物性実験特別研究IB	6	3.0	1	秋ABC	随時	物性実験担当教員(前期)	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野で必要な基本理論および実験 手法を習得し、研究テーマに沿った実験を行う。研究の進捗状況 についてのプレゼンテーションを行う。	01BC612と同一。 要望があれば英語で授 業. 対面
0AJCE53	物性実験特別研究IIA	6	3. 0	2	春ABC	随時	物性実験担当教員	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野について実験を行い、結果を議論する。次の実験に議論の結果を反映させる。	01BC613と同一。 要望があれば英語で授 業. 対面
0AJCE54	物性実験特別研究IIB	6	3. 0	2	秋ABC	随時	物性実験担当教員(前期)	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野について、研究テーマの目的を達成するための実験を行う。実験成果をまとめてプレゼンテーションを行う。	01BC616と同一。 要望があれば英語で授 業. 対面
0AJCE60	物性理論特講Ⅰ	1	1. 0	1 • 2	春季休業中	集中		物性理論に関わるトピックスについて、外部講師を招いて講義する。	01BC466と同一。 対面

0AJCE61	物性理論特講II	1	1.0	1 • 2	春季休業中	集中	村川 武志	物性理論に関するトピックスについて、外部講師を招いて講義する。	01BC467と同一。 対面 非常勤講師担当科目
0AJCE71	物性実験特講Ⅰ	1	1.0	1 • 2	夏季休業 中	集中		物性実験に関するトピックスについて、外部講師を招いて講義する。	01BC468と同一。 対面
0AJCE72	宇宙物理特講[[1	1.0	1 • 2	夏季休業 中	集中		物性実験に関するトピックスについて、外部講師を招いて講義する。	01BC469と同一。 詳細後日周知. 対面

専門科目(放射光物質科学コース)

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJCJ01	放射光物質科学概論	1	1.0	1	春C	集中	西堀 英治,守友浩,小林 航,笠井	PFやSPring-8から講師を招き、放射光の測定原理、利用可能な装置群について概説する。また、コース学生の研究テーマをブレゼンし、放射光利用に関する議論を行う。テーマは、放射光を利用した回折と分光の両者を含み、放射光と物質との相互作用について散乱と吸収・発光の両面から学び知識を得ることを目標とする。放射光と物質との相互作用から自分の知りたい物性物理の課題に対して放射光を利用した研究の進展を検討する。	01BC811, 0AJRK01と同一。 要望があれば英語で授 業 対面 自然系学系棟B602
0AJCJ02	放射光物質科学特論[3	1.0	2	春ABC	随時	西堀 英治,守友	特別研究に沿った研究テーマで放射光を利用した研究計画を策定する。大学院生が課題申請可能である場合には、課題採択を目指す 申請内容のプレゼン、コース教員による申請書添削、等すむ。大学院生で申請可能な課題に申請したうえで、実験を行い、報告書成果発表などの全プロセスを経験する。研究計画の立案から、必要装置の選定、必要実験時間の設定など外部施設利用で必須となる基本的な能力を習得する。	01BC812, 01BC814と同 一。 要望があれば英語で授 業. 対面

専門科目	(プラズマ物理分野)								
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJCF01	プラズマ物理学特論!	4	2. 0	1 • 2	春ABC秋A	火5	南 龍太郎, 小波藏純子	プラズマ物理学を中心として、プラズマ閉じ込め、加熱、輸送、不安定性、境界プラズマやプラズマと材料との相互作用及びブラズマ計測などに関する研究についてセミナーを行う。履修研究背でれぞも自の専門テーマを選び、関連する先行研究や研究は景・目的・方法についての理解を深めるとともに最新の研究成果についても調査する。それらの内容についてのプレゼンテーション、質疑応答・討論を行い、プラズマに関する幅広い知識を取得することを目指す。	01BC500と同一。 対面
OAJCF02	プラズマ物理学特論!!	4	2. 0	1 • 2	春ABC秋A	月4	假家 強, 平田 真史	受講者は、事前に、各自の研究テーマに関連する分野の最新の査読付英語論文を中心に講読、要点をまとめ、関連内容を調査し、プレゼンテーションを行う。プレゼンテーション内容に関し、全員で質疑、討論を行う。各回、輪番で2°3人がプレゼンテーションを担当する。テーマ例としては、"プラズマと粒子、プラズマの加熱(電子を担当する。テーマ例としては、"プラズマと粒子、プラズマの加熱(電子サイクロトロン共鳴加熱、イオンサイクロトロン共鳴加熱、プラズマの解し、プラズマの影響を開いた計測、幹電型エネルギー分析器を用いた計測、マイクロ波を用いた計測、X線、分光計測、トムソン散乱計測)、プラズマ壁相互作用、ジャイロトロン、ブラズマと核融合、国際熱核融合実験炉(ITER)、核融合炉の実現、先進核融合炉研究"などである。	01BC501と同一。 対面 教室はPRC3F
OAJCF06	核融合特論	1	2.0	1 • 2	春ABC	火2,集 中	坂本 瑞樹. 沼倉 友晴	核融合実験の基礎としてのプラズマ物理を考察し、種々の磁場閉じ込め方式の特徴と課題について、主として講義形式で解説する。まず、核融合反応と核融合研究の歴史について概説した後、様々の閉じ込め方式に基づく核融合炉について述べ、特にミラー型装置での実験を詳述する。また、核融合に密接する高温プラズマ生成、燃料補給や、核融合反応を発生・持続させる為のプラズマ上、燃料補給や、核融合反応を発生・持続させる為のプラズマか熟、核融合プラズの知識であるプラズマ壁相互作用、閉じ込めの場の物理を論ずる。以上の講義を通じて、受講者に核融合の正しい知識と理解、炉建設に向けた必要な知見並びに課題を習得することを目標とする。	01BC504と同一。 講義の実施形態につい ては今後決定する。

0AJCF07	プラズマ計測学特論	1	1.0	1 • 2	秋AB	火1	吉川 正志	プラズマ計測に関するプラズマ物理について解説する。現在行われている最先端のプラズマ診断法について、その基本となる物理を理解しどのような原理をもとにその診断法が使われているかを理解する。講義内容は、プラズマ診断の基礎、プロープ計測による電子測、磁場計測、分光計測によるプラズマ診断、マイクロ波計測によるプラズマ密度・密度揺動計測、レーザー・トムソン胶乱計測による電で要求で密度・密度計測、重粒子ビー社計測による電位計測、電位揺動等について解説する。また核融合炉に必須なダイバータ・プラズマにおけるプラズマ計測についても解説する。以上の講義のほか、学生各自の研究内容における計測関連についての議論も行う。	教室:自然系B602 01BC526と同一。 講義の実施形態につい では今後決定する。
0AJCF11	プラズマセミナーI	2	1.0	1	春ABC	応談	プラズマ担当教員(前期)	プラズマ物理学について、セミナー形式で学ぶ。テーマとしては、ブラズマについての基礎過程(気体論、荷電粒子の運動、プラズマ生成など)やプラズマの挙動について、また核融合プラズマやプラズマの閉じ込め、タンデムミラープラズマなどを学ぶ。	01BC630と同一。 講義の実施形態につい ては今後決定する。
0AJCF12	プラズマセミナーII	2	1.0	1	秋ABC	応談	プラズマ担当教員(前期)	プラズマセミナーIに引き続き、プラズマ物理学について、セミナー形式で学ぶ。テーマとしては、粒子の運動、流体としてのプラズマ、プラズマ中の波動、拡散や安定性、非線形効果、制御核融合、プラズマ応用などを学ぶ。	01BC631と同一。 講義の実施形態につい ては今後決定する。
0AJCF13	プラズマセミナーIII	2	1.0	2	春ABC	応談	プラズマ担当教員 (前期)	プラズマセミナーIIに引き続き、プラズマ物理学について、セミナー形式で学ぶ。テーマとしては、プラズマ中の電子・イオン・中性粒子の密度・温度や、プラズマの電位等の情報を調べる種々のプラズマ計測手法(プロープ計測、マイクロ波計測、分光計型などを学ぶ。また、プラズマ中に発生する不安定性(ドリフト型で安定性やフルート型不安定性)や、プラズマの閉じ込め改善について学ぶ。	01BC632と同一。 講義の実施形態につい ては今後決定する。
0AJCF14	プラズマセミナーIV	2	1.0	2	秋ABC	応談	プラズマ担当教員 (前期)	プラズマセミナーIIIに引き続き、プラズマ物理学について、セミナー形式で学ぶ。テーマとしては、核融合を指向したプラズマにおける、周辺プラズマやダイパータプラズマ、またブラズマと材料との相互作用について学ぶ。関連する項目として、水素リサイクリング、原子・分子過程、シースプラズマなどを学び、また低温プラズマ計測についても学ぶ。	01BC633と同一。 講義の実施形態につい では今後決定する。
0AJCF21	プラズマ特別研究IA	7	3. 0	1	春ABC	随時	プラズマ担当教員(前期)	プラズマ研究センターのタンデムミラー型装置GAMMA10/PDXと加熱装置、計測装置等を用いて、プラズマの生成、加熱、閉じ込め、プラズマ・壁相互作用、並びにマイクロ波、X線、静電プローブ、ビームプローブ等によるプラズマ計測の実験を行い、得られた実験結果について討論する。実験装置の原理や実験手法を習得するとともにプラズマについての理解を深める。	01BC642と同一。 講義の実施形態につい ては今後決定する。
0AJCF22	プラズマ特別研究IB	7	3. 0	1	秋ABC	随時	プラズマ担当教員 (前期)	プラズマ特別研究IAに引き続き、プラズマ物理学実験を進める上で必要となる実験装置、データ収集・処理、物理解析の基礎を習得するとともに、実験に関する報告と討論を通して、プラズマ核融合科学とプラズマ物理学の知識と研究を進める能力を習得する。	01BC645と同一。 講義の実施形態につい ては今後決定する。
0AJCF23	プラズマ特別研究IIA	7	3.0	2	春ABC	随時	プラズマ担当教員(前期)	プラズマ特別研究IBに引き続き、プラズマ物理、プラズマ核融合実験に関する基礎知識に加えて応用的な知識も取得するとともに、更なる専門知識をGAMMA IO/PDX等の装置を用いた実験を通して習得し、得られた研究内容を討論して深めることを目指す。教員の直接の指導により、研究のまとめ方や発表の仕方も習得する。	01BC646と同一。 要望があれば英語で授業 講義の実施形態につい ては今後決定する。
0AJCF24	プラズマ特別研究IIB	7	3.0	2	秋ABC	随時	プラズマ担当教員(前期)	修士論文の作成を行う。そのために、プラズマ物理、プラズマ核融合実験に関連する知識に加えて、研究テーマに関係する研究をまとめ、得られた研究内容を討論して深めることを目指す。教員の直接の指導により、研究のまとめ方や発表の仕方も習得する。学会、研究会で得られた研究成果を発表する。	01BC649と同一。 要望があれば英語で授業 講義の実施形態につい ては今後決定する。
0AJCF41	プラズマ特講Ⅰ	1	1.0	1 - 2	夏季休業 中	集中		Lecture on topics related to plasma physics by a visiting lecturer.	01BC506と同一。 対面
0AJCF42	プラズマ特講Ⅱ	1	1.0	1 • 2	夏季休業中	集中		プラズマ物理学に関するトピックスについて、外部講師を招いて 講義する。	01BC507と同一。 英語で授業。 対面 ブラズマ研究センター 3階 会議室(マイク ロ波調整室)

専門科目(宇宙史分野)

科目番号	科目名	授業方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJCGO1	宇宙史拠点実習Ⅰ	3	1.0	1 • 2	通年		宇宙史コース担当 教員(前期)	1ヶ月程度、海外拠点へ派遣し、宇宙史に関連する分野の研究実習を行う。事前事後の筑波キャンパスにおける指導・報告および現地での研究指導を併せて行う。研究する分野財、主に素料予物理学、原子核物理学、物質科学であるが、関連する近隣分野を含む。実習の具体的な例として、欧州CFRN研究所や米国フェルミ国立加速器研究所における高エネルギー粒子ビームを用いた出出器の開発および性能評価が挙げられる。実習の成果を事後にまとめて発表することが要求される。これらを通じ、宇宙史研究の実践的技能の基礎を獲得し、グループの一員として共同研究を進める能力、および、研究の成果を他人に分かりやすく伝える能力を獲得する。	01BC550と同一。 対面(オンライン併用 型)

0AJCG02	宇宙史拠点実習Ⅱ	3	1.0	1 • 2	通年	随時	宇宙史コース担当 教員(前期)	1ヶ月程度、海外拠点へ派遣し、宇宙史に関連する分野の研究実習を行う。事前事後の筑波キャンパスにおける指導・報告および現地での研究指導を併せて行う。研究する分野は、主に素粒子物理学、原子核物理学、物質科学であるが、関連する近隣分野を含む。実習の具体的な例として、欧州CERN研究所や米国フェルミ国立加速器研究所における高まネルギーがサービームを用いた検出器の開発および性能評価が挙げられる。実習の成果を事後にまとめて発表することが要求される。これらを通じ、宇宙史研究の高度な実践的技能を獲得し、国際的な環境で最先端の共同研究を遂行する能力を身につける。博士前期課程1年次での履修を想定している。。	01BC551と同一。 対面(オンライン併用 型)
0AJCG21	宇宙史特別研究IA	3	3.0	1	春ABC	随時	宇宙史コース担当 教員(前期)	宇宙史研究の基礎となる実験観測の技術、データ処理、物理解析 を習得し、修士論文研究のための基盤となる能力を獲得する。ま た、先行研究の動向を調査し、自身の研究テーマを決定する。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 索に関する実験観測などの研究に従事する。	01BC661と同一。 要望があれば英語で授 業、対面(オンライン 併用型)
0AJCG22	宇宙史特別研究IB	3	3.0	1	秋ABC	随時	宇宙史コース担当教員(前期)	宇宙史研究の基礎となる実験観測の技術、データ処理、物理解析 を習得し修士論文のための研究を始める。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 素に関する実験観測などの研究に従事する。	01BC664と同一。 要望があれば英語で授 業・対面(オンライン 併用型)
0AJCG23	宇宙史特別研究IIA	3	3. 0	2	春ABC	随時	宇宙史コース担当 教員(前期)	宇宙史特別研究IA、IBに引き続き、宇宙史研究の基礎となる実験 観測の技術、データ処理、物理解析を習得し修士論文のための研 究を進める。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 索に関する実験観測などの研究に従事する。	01BC665と同一。 要望があれば英語で授 業 対面(オンライン 併用型)
OAJCG24	宇宙史特別研究IIB	3	3. 0	2	秋ABC	随時	宇宙史コース担当 教員(前期)	宇宙史特別研究IA、IB、IIAに引き続き、宇宙史研究の基礎となる 実験観測の技術、データ処理、物理解析を習得し、発展させて修 士論文としてまとめる。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 素に関する実験観測などの研究に従事する。	01BC668と同一。 要望があれば英語で授 業・対面(オンライン 併用型)

専門科目(加速器科学分野)

科目番号	科目名	授業方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJCH01	加速器科学実習!	3	1.0	1 • 2	通年	随時			01BC602と同一。 対面 (オンライン併用 型)

0AJCH02	加速器科学実習II	3	1.0	1 • 2	通年	随時	加速器科学コース 担当教員(前期)	1-2週間程度、高エネルギー加速器研究機構(KEK)へ派遣し、加速器科学分野における研究実習を行う。事前事後の筑波キャンパスにおける指導・報告および現地での研究指導を併せて行う。必要に応じて、KEK教員の協力を仰ぐ。研究する分野は、素粒子物理学、原子核物理学、物質科学、および関連する分野である。実習の具体的な例として、KEK設置の加速器からの粒子ビームを用いた検出器の例発および性能評価が挙げられる。実習の成果を事後にまとめて発表することが要求される。これらを通じ、加速器科学研究の高度な実践的技能を獲得し、研究室とは異なる環境で最先端の共同研究を遂行する能力を身につける。博士前期課程2年次での履修を想定している。	01BC603と同一。 対面(オンライン併用 型)
OAJCH11	加速器科学セミナー【	2	1.0	1	通年	応談	加速器科学コース 担当教員(前期)	加速器科学教育の一環として、異なるグループが共同して、分野 横断で修士論文中間報告を中心とした加速器科学教育を行う。 各自が行っている研究についての発表と質疑応答を行い、自分の 研究分野および他の分野についての知見を深め、自身の修士論文 研究の意義をより広い視野から俯瞰し理解する。また、加速器科 学研究の位置づけについて、再度考える機会を提供する。さらに は、自分の専門分野とは異なる分野の人々に対し、明快に説明す る能力を養う。博士前期課程1年次での履修を想定している。	01BC604と同一。 対面(オンライン併用 型)
0AJCH12	加速器科学セミナーⅡ	2	1.0	2	通年	応談	加速器科学コース 担当教員(前期)	加速器科学教育の一環として、異なるグループが共同して、分野 横断で修士論文中間報告を中心とした加速器科学教育を行う。 各自が行っている研究についての発表と質疑応答を行い、自分の 研究分野および他の分野についての知見を深め、修士論文研究を さらに進展させるための一助とする。また、加速器科学研究の位 置づけについて、再度考える機会を提供する。さらには、自分の 専門分野とは異なる分野の人々に対し、明快に説明する能力を養 う。博士前期課程2年次での履修を想定している。	0180605と同一。 対面(オンライン併用型)
0AJCH21	加速器科学特別研究IA	3	3. 0	1	春ABC	随時	加速器科学コース 担当教員(前期)	加速器科学研究の基礎となる実験観測の技術、データ処理、物理解析の基礎を習得し、修士論文研究のための基盤となる能力を獲得する。また、先行研究の動向を調査し、自身の研究テーマを決定する。加速器の原理および実際について学ぶ。加速器を用いた、素粒子物理学・原子核物理学・物質科学など物理学の諸分野における研究に従事する。必要に応じて、高エネルギー加速器研究機構(KEK)等の大型加速器装置を持つ外部機関に滞在する。	01BC682と同一。 対面(オンライン併用 型)
OAJCH22	加速器科学特別研究IB	3	3. 0	1	秋ABC	随時	加速器科学コース 担当教員(前期)	加速器科学研究の基礎となる実験観測の技術、データ処理、物理解析を習得し修士論文のための研究を始める。 加速器の原理および実際について学ぶ。加速器を用いた、素粒子物理学・物質科学など物理学の諸分野における研究に従事する。必要に応じて、KEK等の大型加速器装置を持つ外部機関に滞在する。	対面(オンライン併用型)
0AJCH23	加速器科学特別研究IIA	3	3. 0	2	春ABC	随時	加速器科学コース 担当教員(前期)	加速器科学特別研究IA、IBに引き続き同研究を行い、加速器科学研究の基礎となる実験観測の技術、データ処理、物理解析を習得し修士論文としてまとめるために発展させる。加速器の原理および実際について学ぶ、加速器を用いた、素粒子物理学・原子核物理学・物質科学など物理学の諸分野における研究に従事する。必要に応じて、KEK等の大型加速器装置を持つ外部機関に滞在する。	01BC686と同一。 対面(オンライン併用 型)
0AJCH24	加速器科学特別研究IIB	3	3. 0	2	秋ABC	随時	加速器科学コース 担当教員(前期)	加速器科学特別研究IA、IB、IIAに引き続き同研究を発展させて修 士論文としてまとめる。 加速器の原理および実際について学ぶ。加速器を用いた、素粒子 物理学・原子核物理学・物質科学など物理学の諸分野における研 究に従事する。必要に応じて、KEK等の大型加速器装置を持つ外部 機関に滞在する。	対面(オンライン併用型)

専門科目(素粒子物理分野)-秋入学者向け-

31 11 H			•						
科目番号	科目名	授業方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJDB21	素粒子論特別研究IA	3	3. 0	1	秋ABC	随時	素粒子論担当教員 (前期),素粒子論 担当教員(物理学 学位プログラム前 期)		01BC378と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)

0AJDB22	素粒子論特別研究IB	3	3. 0	1	春ABC	随時	素粒子論担当教員 (前期)	素粒子物理学(理論分野)の発展に寄与した重要論文を輪講形式で 講読し、素粒子物理を研究するための基礎理論を幅広く学ぶ。	01BC379と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDB23	素粒子論特別研究IIA	3	3. 0	2	秋ABC	随時	素粒子論担当教員(前期)	素粒子物理学(理論分野)の研究を行うために、素粒子論特別研究Iに続き、格子ゲージ理論、共形場理論、超弦理論等、専門を希望する分野の基礎的論文を輪講形式で講読する。	01BC382と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDB24	素粒子論特別研究IIB	3	3. 0	2	春ABC	随時	素粒子論担当教員(前期)	素粒子物理学(理論分野)の研究を行うために、素粒子論特別研究 IIAに続き、格子ゲージ理論、共形場理論、超弦理論等、専門を希 望する分野の最新の論文を輪講形式で講読する。	01BC383と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
OAJDB31	素粒子実験特別研究IA	3	3. 0	1	秋ABC	随時	素粒子実験担当教員(前期)	素粒子実験研究を進める上で必要となる測定器技術、データ処理、物理解析の基礎を習得し、修士論文研究のための基盤となる能力を獲得する。また、先行研究の動向を調査し、自身の研究テーマを決定する。	01BC386と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面
0AJDB32	素粒子実験特別研究IB	3	3.0	1	春ABC	随時	素粒子実験担当教員(前期)	素粒子実験研究を進める上で必要となる測定器技術、データ処理、物理解析の基礎を習得し、修士論文のための研究を始める。現在進行中あるいは採来に計画されている素を実験あるいはテストを提供がある。というでは、一人を用いた実験を遂行し、検出器の基本性能の評価や本実験に向けた設計に従事する。得られたデータの解析を行い、データ処理の手法を学ぶ。関連して、物理解析の基礎に従事する場合もある。	01BC387と同一。 要望があれば英語で授業・秋入学者向け、対面
OAJDB33	素粒子実験特別研究IIA	3	3.0	2	秋ABC	随時	素粒子実験担当教員(前期)	素粒子実験特別研究IAおよびIBに引き続き、修士論文としてまとめるために同研究を進める。 現在進行中あるいは将来に計画されている素粒子実験のための測定器の開発に従事し、テスト・ベンチによる実験あるいはテスト・ビームを用いた実験を遂行し、検出器の基本性能の評価や本実験に向けた設計に従事する。得られたデータの解析を行い、データ処理の手法を学ぶ。関連して、物理解析の基礎に従事する場合もある。	01BC390と同一。 要望があれば英語で授業 秋入学者向け、対 面
OAJDB34	素粒子実験特別研究IIB	3	3.0	2	春ABC	随時	素粒子実験担当教員(前期)	素粒子実験特別研究IA、IB、IIAに引き続き、同研究を発展させて修士論文としてまとめる。 現在進行中あるいは将来に計画されている素粒子実験のための測定器の開発に従事し、テスト・ベンチによる実験あるいはテスト・ビームを用いた実験を遂行し、検出器の基本性能の評価や本実験に向けた設計に従事する。得られたデータの解析を行い、データ処理の手法を学ぶ。関連して、物理解析の基礎に従事する場合もある。	01BC391と同一。 要望があれば英語で授業・秋入学者向け、対面

専門科目(宇宙物理分野)-秋入学者向け-

科目番号	科目名	授業方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJDC21	宇宙物理特別研究IA	3	3. 0	1	秋ABC	随時	大須賀 健,森 正夫,矢島 秀伸,吉川 耕司,福島 肇	重力流体力学と輻射流体力学に関係する基礎物理過程を押さえるために、自己重力・流体・輻射を入れた物理系を考え、諸相互作用の共存による現象を解析的、数値的に調べる。 プログラミング技術も習得する。	01BC435と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)
0AJDC22	宇宙物理特別研究IB	3	3. 0	1	春ABC	随時	大須賀 健,森 正夫,矢島 秀伸,吉川 耕司,福島 肇	宇宙物理特別研究IAに引き続き、重力流体力学と輻射流体力学に 関係する基礎物理過程を押さえるために、自己重力・流体・輻射 を入れた物理系を考え、諸相互作用の共存による現象を解析的、 数値的に調べる。プログラミング技術も習得する。	01BC436と同一。 要望があれば英語で授 業 秋入学者向け、対 面(オンライン併用型)
0AJDC23	宇宙物理特別研究IIA	3	3. 0	2	秋ABC	随時	大須賀 健,森 正夫,矢島 秀伸,吉川 耕司,福島 肇	宇宙物理特別研究IA、IBに継続し、同一テーマを発展させてその成果を論文として取りまとめるために同研究を進める。	01BC439と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)
0AJDC24	宇宙物理特別研究IIB	3	3. 0	2	春ABC	随時	大須賀 健, 矢島 秀伸,森 正夫, 吉 川 耕司, 福島 肇	宇宙物理特別研究IA、IB、IIAに継続し、同一テーマを発展させて その成果を論文として取りまとめる。	01BC440と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)
0AJDC31	宇宙観測特別研究IA	3	3. 0	1	秋ABC	随時	久野 成夫 橋本 拓也, 本多 俊介	主として電波天文字的手法により銀河・銀河系・遠方宇宙等の観測的研究の基礎を習得し、修士論文の研究を始める。内容的には、電波天文学的手法による銀河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する計画に関する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	01BC443と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)

OAJDC32	宇宙観測特別研究IB	3	3. 0	1	春ABC	久野 成夫,橋本	宇宙観測特別研究IAに引き続き、主として電波天文字的手法により銀河・銀河系・遠方宇宙等の観測的研究の基礎を習得し、修士論文の研究を進める。内容的には、電波天文学的手法による銀河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する計画に関する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	01BC444と同一。 要望があれば英語で授業・秋入学者向け、対面(オンライン併用型)
OAJDC33	宇宙観測特別研究IIA	3	3. 0	2	秋ABC	久野 成夫,橋本	宇宙観測特別研究IAおよびIBを発展させ、成果を修士論文としてまとめるために同研究を進める。内容的には、電波天文学的手法による銀河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する計画に関する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	01BC447と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)
OAJDC34	宇宙観測特別研究IIB	3	3. 0	2	春ABC	カ野 成土 埼木	宇宙観測特別研究IA、IB、IIAに継続し、同研究を発展させてその成果を修士論文としてまとめる。内容的には、電波天文学的手法による銀河系、系外銀河、活動的銀河中心核、遠方宇宙等の観測的研究および観測装置開発、南極内陸部高原地帯にサブミリ・テラヘルツ望遠鏡を建設して南極天文学を推進する計画に関する開発、既存の野辺山45m電波望遠鏡、ALMAなどを用いた観測などを行っている。	01BC448と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)

専門科目	門科目(原子核物理分野)-秋入学者向け-												
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考				
0AJDD21	原子核論特別研究IA	3	3. 0	1	秋ABC	随時	原子核論担当教員 (前期)	有限量子多体系としての原子核を理解する上で必要な基本的理論 について、その発展と応用に向けた研究のための多粒子系の量子 論の基礎を学ぶ。	01BC511と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)				
0AJDD22	原子核論特別研究IB	3	3. 0	1	春ABC	随時	原子核論担当教員(前期)	有限量子多体系としての原子核を理解する上で必要な基本的理論 について、その発展と応用に向けた研究のための多粒子系の量子 論の基礎を学ぶ。	01BC512と同一。 要望があれば英語で授 業. 秋入学者向け. 対 面(オンライン併用型)				
0AJDD23	原子核論特別研究IIA	3	3. 0	2	秋ABC	随時	原子核論担当教員 (前期)	原子核及び関連する有限量子系の理論について、セミナー形式で 行う。	01BC515と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)				
0AJDD24	原子核論特別研究IIB	3	3. 0	2	春ABC	随時	原子核論担当教員(前期)	原子核及び関連する有限量子系の理論について、セミナー形式で 行う。	01BC516と同一。 要望があれば英語で授業、秋入学者向け、対面(オンライン併用型)				
OAJDD31	原子核実験特別研究IA	3	3. 0	1	秋ABC	随時	原子核実験担当教員(前期)	修士論文の研究を開始するにあたって、適切な研究テーマを選ぶために必要な原子核物理学や実験技術に関して確認し、各自の状況に適したアドバイス・指導を行う。内容としては、初期宇宙の物質相や宇宙元素合成など宇宙の歴史に関わる研究や加速器質量分析が近別定器技術・加速器技術を活用する広範な原子核物理学に関して、研究の実践、指導を行い、以下の各課題について論文指導を行う。	01BC519と同一。 要望があれば英語で授業。秋入学者向け、対面(オンライン併用型)				
OAJDD32	原子核実験特別研究IB	3	3. 0	1	春ABC	随時	原子核実験担当教員(前期)	原子核実験特別研究IAに引き続き、修士論文の研究を展開するために必要な原子核物理学や実験技術の理解を深めると同時に具体的に研究に着手できるようにアドバイス・指導を行う。内容としては、初期宇宙の物質相や宇宙元素合成など宇宙の歴史に関わる研究や加速器質量分析など測定器技術・加速器技術を活用する広範な原子核物理学に関して、研究の実践、指導を行い、以下の各課題について論文指導を行う。	01BC520と同一。 要望があれば英語で授業・秋入学者向け、対面(オンライン併用型)				
OAJDD33	原子核実験特別研究IIA	3	3. 0	2	秋ABC	随時	原子核実験担当教員(前期)	修士論文の研究成果に結びつくように進捗状況に応じてアドバイス・指導を行う。修士論文の骨子の作成や議論の進め方についても指導を行う。 内容としては、初期宇宙の物質相や宇宙元素合成など宇宙の歴史に関わる研究や加速器質量分析など測定器技術・加速器技術を活用する広範な原子核物理学に関して、研究の実践、指導を行い、以下の各課題について論文指導を行う。	01BC523と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)				

OAJDD34	原子核実験特別研究IIB	3	3. 0	2	春ABC	随時	原子核実験担当教	修士論文の作成に重点を移し、先行研究や理論計算との比較など 議論の進め方についてアドバイス・指導を行う。先行研究の取り 扱い方や引用の仕方など論文の書き方についても指導する。内容 としては、初期宇宙の物質相や宇宙元素合成など宇宙の歴史に関 わる研究や加速器質量分析など測定器技術・加速器技術を活用す る広範な原子核物理学に関して、研究の実践、指導を行い、以下 の各課題について論文指導を行う。	要望があれば英語で授 業. 秋入学者向け. 対
---------	--------------	---	------	---	------	----	----------	--	----------------------------

専門科目(物性物理分野)-秋入学者向け-

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJDE41	物性理論特別研究IA	3	3.0	1	秋ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考書を論講形式で講読し、研究を実施するための基礎と素養を学ぶ。購読する論文の選定に関する考え方とその方法論、輪講の進め方と準備する資料などに関する基礎的な手法を指導する。	01BC594と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDE42	物性理論特別研究IB	3	3. 0	1	春ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考 書を輪講形式で講読し、研究を実施するための基礎と素養を学 ぶ。受講者の準備した資料に基づき参考書・論文の主張を正確に 把握する方法を指導する。	01BC595と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDE43	物性理論特別研究IIA	3	3. 0	2	秋ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考書を論講形式で講読し、研究を実施するための基礎と素養を学ぶ。修士論文の課題に沿った関連論文の選定方法と、論文の主張に対する批判的な視点での検証を行うよう指導する。	01BC598と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDE44	物性理論特別研究IIB	3	3.0	2	春ABC	随時	物性理論担当教員(前期)	統計物理学および物性物理学の理論や実験に関連する論文や参考書を輪講形式で講読し、研究を実施するための基礎と素養を学ぶ。修士論文の課題に関連する分野にとどまらず、研究の波及効果なども含めた広い観点での文献調査を行うよう指導する。	01BC599と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDE51	物性実験特別研究IA	6	3. 0	1	秋ABC	随時	物性実験担当教員(前期)	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野の実験を行うために必要な知識を習得し、基本的な実験技術を身につけて、実験を行う。	01BC610と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDE52	物性実験特別研究IB	6	3. 0	1	春ABC	随時	物性実験担当教員(前期)	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野で必要な基本理論および実験 手法を習得し、研究テーマに沿った実験を行う。研究の進捗状況 についてのブレゼンテーションを行う。	01BC611と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDE53	物性実験特別研究IIA	6	3. 0	2	秋ABC	随時	物性実験担当教員(前期)	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野について実験を行い、結果を議論する。次の実験に議論の結果を反映させる。	01BC614と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
OAJDE54	物性実験特別研究IIB	6	3. 0	2	春ABC	随時	物性実験担当教員(前期)	磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性の各分野について、研究テーマの目的を達成するための実験を行う。実験成果をまとめてプレゼンテーションを行う。	01BC615と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)

専門科目(プラズマ物理分野)-秋入学者向け-

専門科目	<u>(プラズマ物理分野)−秋</u> /	人学者「	可けー						
科目番号	科目名	授業方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJDF21	プラズマ特別研究IA	7	3. 0	1	秋ABC	随時	プラズマ担当教員(前期)	プラズマ研究センターのタンデムミラー型装置GAMMAIO/PDXと加熱装置、計測装置等を用いて、プラズマの生成、加熱、閉じ込め、プラズマ・壁相互作用、並びにマイクロ波、採線、静電プローブ、ビームプローブ等によるプラズマ計測の実験を行い、得られた実験結果について討論する。実験装置の原理や実験手法を習得するとともにプラズマについての理解を深める。	01BC643と同一。 要望があれば英語で授 業 秋入学名向け 講義の実施形態につい ては今後決定する。
0AJDF22	プラズマ特別研究IB	7	3. 0	1	春ABC	随時		プラズマ特別研究IAに引き続き、プラズマ物理学実験を進める上で必要となる実験装置、データ収集・処理、物理解析の基礎を習得するとともに、実験に関する報告と討論を通して、プラズマ核融合科学とプラズマ物理学の知識と研究を進める能力を習得する。	01BC644と同一。 要望があれば英語で授 業. 秋入学者向け 講義の実施形態につい ては今後決定する。
0AJDF23	プラズマ特別研究IIA	7	3. 0	2	秋ABC	随時	プラズマ担当教員 (前期)	プラズマ特別研究IBに引き続き、プラズマ物理、プラズマ核融合実験に関する基礎知識に加えて応用的な知識も取得するとともし、更なる専門知識をGAMMA IO/PDX等の装置を用いた実験を通して習得し、得られた研究内容を討論して深めることを目指す。教員の直接の指導により、研究のまとめ方や発表の仕方も習得する。	01BC647と同一。 要望があれば英語で授 業、秋入学者向け 講義の実施形態につい ては今後決定する。

0AJDF24	プラズマ特別研究IIB	7	3. 0	2	春ABC	随時	プラズマ担当教員		要望があれば英語で授
---------	-------------	---	------	---	------	----	----------	--	------------

専門科目(宇宙史分野)-秋入学者向け-

専門科目	(宇宙史分野)-秋入学者向	リけー							
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJDG21	宇宙史特別研究IA	3	3.0	1	秋ABC	随時	宇宙史コース担当 教員(前期)	宇宙史研究の基礎となる実験観測の技術、データ処理、物理解析 を習得し、修士論文研究のための基盤となる能力を獲得する。ま た、先行研究の動向を調査し、自身の研究テーマを決定する。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 素に関する実験観測などの研究に従事する。	01BC662と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
OAJDG22	宇宙史特別研究IB	3	3.0	1	春ABC	随時	宇宙史コース担当 教員(前期)	宇宙史研究の基礎となる実験観測の技術、データ処理、物理解析 を習得し修士論文のための研究を始める。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 素に関する実験観測などの研究に従事する。	01BC663と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
OAJDG23	宇宙史特別研究IIA	3	3. 0	2	秋ABC	随時	宇宙史コース担当教員(前期)	宇宙史特別研究IA、IBに引き続き、宇宙史研究の基礎となる実験 観測の技術、データ処理、物理解析を習得し修士論文のための研 究を進める。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 素に関する実験観測などの研究に従事する。	01BC666と同一。 要望があれば英語で授業. 秋入学者向け. 対面(オンライン併用型)
0AJDG24	宇宙史特別研究IIB	3	3.0	2	春ABC	随時	宇宙史コース担当 教員 (前期)	宇宙史特別研究IA、IB、IIAに引き続き、宇宙史研究の基礎となる 実験観測の技術、データ処理、物理解析を習得し、発展させて修 土論文としてまとめる。 高エネルギー粒子加速器を用いた素粒子・原子核の衝突実験、宇 宙背景ニュートリノとその崩壊を探索する実験、不安定核と宇宙 元素合成に関する実験、宇宙初期の初代天体および暗黒銀河の探 素に関する実験観測などの研究に従事する。	要望があれば英語で授 業. 秋入学者向け. 対

専門科目(加速器科学分野)-秋入学者向け-

导门件日	(加速器科字分野)-秋人字	<u>- 伯미</u> (<u> </u>						
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJDH21	加速器科学特別研究IA	3	3. 0	1	秋ABC		加速器科学コース 担当教員(前期)	加速器科学研究の基礎となる実験観測の技術、データ処理、物理解析の基礎を習得し、修士論文研究のための基盤となる能力を獲得する。また、先行研究の動向を調査し、自身の研究テーマを決定する。加速器の原理および実際について学ぶ。加速器を用いた、素粒子物理学・原子核物理学・物質科学など物理学の諸分野における研究に従事する。必要に応じて、高エネルギー加速器研究機構(KEK)等の大型加速器装置を持つ外部機関に滞在する。	01BC683と同一。 秋入学者向け. 対面 (オンライン併用型)
0AJDH22	加速器科学特別研究IB	3	3.0	1	春ABC	随時	加速器科学コース 担当教員 (前期)	加速器科学研究の基礎となる実験観測の技術、データ処理、物理 解析を習得し修士論文のための研究を始める。 加速器の原理および実際について学ぶ。加速器を用いた、素粒子 物理学・原子核物理学・物質科学など物理学の諸分野における研 究に従事する。必要に応じて、KEK等の大型加速器装置を持つ外部 機関に滞在する。	秋入学者向け. 対面
OAJDH23	加速器科学特別研究IIA	3	3. 0	2	秋ABC		加速器科学コース 担当教員(前期)	加速器科学特別研究IA、IBに引き続き同研究を行い、加速器科学研究の基礎となる実験観測の技術、データ処理、物理解析を習得し修士論文としてまとめるために発展させる。加速器の原理および実際について学ぶ。加速器を用いた、素粒子物理学・原子核物理学・物質科学など物理学の諸分野における研究に従事する。必要に応じて、KEK等の大型加速器装置を持つ外部機関に滞在する。	01BC687と同一。 秋入学者向け. 対面 (オンライン併用型)

0AJDH24	加速器科学特別研究IIB	3	3. 0	2	春ABC		加速器科学コース 担当数員(前期)	加速器科学特別研究IA、IB、IIAに引き続き同研究を発展させで修 土論文としてまとめる。 加速器の原理および実際について学ぶ。加速器を用いた、素粒子 物理学・原子核物理学・物質科学など物理学の諸分野における研 究に従事する。必要に応じて、KEK等の大型加速器装置を持つ外部 機関に滞在する。	秋入学者向け.対面 (オンライン併用型)
---------	--------------	---	------	---	------	--	-------------------	---	-------------------------

専門科目(素粒子物理分野)-社会人対象科目-

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJDB06	素粒子論セミナー	2	1. 0	1	春ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー形式で勉強する。	社会人に限る. 対面 (オンライン併用型)
0AJDB07	素粒子論セミナーⅡ	2	1. 0	1	秋ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー形式で勉強する。	社会人に限る.対面 (オンライン併用型)
0AJDB08	素粒子論セミナー!!!	2	1.0	2	春ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー形式で勉強する。	社会人に限る.対面 (オンライン併用型)
0AJDB09	素粒子論セミナーIV	2	1. 0	2	秋ABC	応談	素粒子論担当教員 (前期)	素粒子物理学理論の最新のトピックスを、セミナー形式で勉強する。	社会人に限る.対面 (オンライン併用型)
0AJDB11	高エネルギー物理学セ ミナーI	2	1. 0	1	春ABC	応談	素粒子実験担当教員(前期)	最先端素粒子物理の実験的研究について学ぶ。	社会人に限る. 対面 (オンライン併用型)
0AJDB12	高エネルギー物理学セ ミナーII	2	1. 0	1	秋ABC	応談	素粒子実験担当教員(前期)	最先端素粒子物理の実験的研究について学ぶ。	社会人に限る. 対面 (オンライン併用型)
0AJDB13	高エネルギー物理学セ ミナーIII	2	1. 0	2	春ABC	応談	素粒子実験担当教員(前期)	最先端素粒子物理の実験的研究について学ぶ。	社会人に限る. 対面 (オンライン併用型)
0AJDB14	高エネルギー物理学セ ミナーIV	2	1. 0	2	秋ABC	応談	素粒子実験担当教員(前期)	最先端素粒子物理の実験的研究について学ぶ。	社会人に限る. 対面 (オンライン併用型)

専門科目(宇宙物理分野)-社会人対象科目-

専門科目	(宇宙物理分野)-社会人対	才 家科!	=						
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJDCO1	宇宙物理セミナーI	2	1. 0	1	春ABC	応談	大須賀 健,森 正夫 矢島 落伸 吉川 耕司,福島 肇	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離、第一世代天体(宇宙暗黒時代、初代星、初代星、初代は新元文・住学進化、銀河形成・進化(初代線河、九学・化学進化、銀河租賃作用、サブストクチャ問題)、銀河(星種族、分子雲、超新星残作用、サブストクチャ問題)、銀河(星種族、分子雲、超新星残骸、銀河団(加熱メカニズム、銀河団(衛突、重連素分布)、銀河中心核(降着円盤、磁気回転不安定、ジェット)量学系、トーラス、スターバースト)、ブラックホール、随層、ジェット、職長で、カーラ、以下の大力の大一ルの、関係、ダウンサイジング)、高エネルギー現象(超新星、ガンマー線バースト、宇宙線粒子加速)、星形成(小質量星、大質量星、連星、星間物質)、惑星系形成(原始太陽系、原始惑星系円盤、乱流、ダスト、系外惑星系)、宇宙生命形式で学ぶ。	社会人に限る。対面(オンライン併用型)
OAJDCO2	宇宙物理セミナーⅡ	2	1.0	1	秋ABC	応談	大須賀 健 森 正 夫, 矢島 秀伸, 吉 川 耕司, 福島 肇	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離)、第一世代天体(宇宙暗黒時代、初代星、初代星級河里)、銀河形成・進化(初代銀河、力学・化学進化、銀河相互作用、サブストクチャ問題)、銀河(星種族、分子雲、超新星残骸、星間磁場)、銀河団(加熱メカニズム、銀河団衝突、建重元素分布)、銀河中心核(降着円盤、磁気回転不安定、ジェット・返蔵トーラス、スターバースト)、ブラックホール、階層、質量降着、アウトフロー・ジェット、初代ブラックホール、超巨大ブラックホール、ブラックホールーバルジ関係、ダウンサイジング)、高エネルギー現象(超新星、ガンマー線パースト、宇宙線粒子加速)、星形成(外質量星、大質量星、連星、星間物質)、悪星系形成(原始太陽系、原始惑星系円盤、乱流、ダスト、系外惑星系)、宇宙生命(星間有機分子、パイオマーカー)等について、先行研究を通じてこれまでの理解を学ぶ。	社会人に限る。対面(オンライン併用型)

0AJDC03	宇宙物理セミナーIII	2	1.0	2	春ABC	応談	大須賀 健 森 正夫, 矢島 秀伸, 吉 州 耕司, 福島 肇	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離)、第一世代天体(宇宙暗黒時代、初代星、初代 超新星)、銀河形成・進化(初代銀河、力学・化学進化、銀河相互作用、サブストクチャ問題)、銀河(星種族、分子雲、超新星残骸、星間磁場)、銀河団所終、松買転不安定、ジェット、遮蔽トーラス、スターバースト)、ブラックホール、超巨大ブラックホール、ジョットフロー・ジェット、が代ブラックホール、超巨大ブラックホール・バルジ関係、ダウンサイジング)、高エネルギー現象(超新星、ガンマー線パースト、宇宙線粒子加速)、星形成(小質量星、大質量星、連星、星間物質)、惑星系形成(原始太陽系、原始惑星系円盤、乱流、ダスト、系外惑星系)、宇宙生命(星間有機分子、バイオマーカー)等について、演習等を通じて理解を深める。	社会人に限る。対面(オンライン併用型)
OAJDCO4	宇宙物理セミナーIV	2	1.0	2	秋ABC	応談	大須賀 健.森 正夫,矢島 秀伸,吉川 耕司,福島 肇	宇宙論(ダークマター、ダークエネルギー、宇宙背景放射、密度ゆらぎ、宇宙再電離)、第一世代天体(宇宙暗黒時代、初代星、初代星、初代里、別代代用、力学・化学進化、銀河相互作用、サブストクチャ問題、銀河(星種族、分子雲、超新星残骸、星間磁場)、銀河団(加熱メカニズム、銀河団衝突、重元素分布)、銀河中心核(降着円盤、磁気回転不安定、ジェット、遮蔽トーラス、スターバースト)、ブラックホール(階層、質量降着、アウトフロー・ジェット、初代ブラックホール、超巨大ブラックホール、ブラックホール・バルジ関係、ダウンサイジング)、高エネルギー現象(超新星、ガンマー線パースト、宇宙線粒子加速)、ネルギー現象(超新星、ガンマー線パースト、宇宙線粒子加速、星形成(小質量星、大質量星、連星、星間物質)、悪星系形成(原始太陽系、原始惑星系円盤、乱流、ダスト、系外惑星系)、宇宙生命(星間有機分子、バイオマーカー)等について、新たな問題設定を行い、モデル計算等により理解を深める。	(オンライン併用型)
0AJDC11	宇宙観測セミナーI	2	1.0	1	春ABC	応談	久野 成夫. 橋本 拓也. 本多 俊介	電波天文学に関する教科書の輪講・セミナーを行う。内容としては、電波望遠鏡がどのような装置で構成されているか、ヘテロダイン受信機の動作原理や分光計の仕組み、主ビーム能率、開口能率、ビームパターンなどアンテナ性能についてと、その評価方法、観測された電波の強度校正法、干渉計の原理やその長所短方、などについてである。また、観河系、系外銀河、星形成領域、巨大ブラックホールなどの観測的研究や装置開発などの宇宙観測分野に関する研究について、セミナー形式で学ぶ。	01BC430と同一。 社会人に限る. 対面 (オンライン併用型)
0AJDC12	宇宙観測セミナーII	2	1.0	1	秋ABC	応談		宇宙観測セミナー!に続き、電波天文学に関する教科書の輪講・セミナーを行う。内容としては、電波望遠鏡がどのような装置で構成されているか、ヘテロダイン受信機の動作原理や分光計の仕組み、主ビーム能率、開口能率、ビームパターンなどアンテナ性能についてと、その評価方法、観測された電波の強度校正法、干渉計の原理やその長所短所、などについてである。また、銀河系、系外銀河、星形成領域、巨大ブラックホールなどの観測的研究や装置開発などの宇宙観測分野に関する研究について、セミナー形式で学ぶ。また、各自の研究課題についての発表を行う。	01BC431と同一。 社会人に限る. 対面 (オンライン併用型)
OAJDC13	宇宙観測セミナーIII	2	1.0	2	春ABC	応談	久野 成夫, 橋本 拓也, 本多 俊介	宇宙観測分野に関する研究について、セミナー形式で学ぶ。取り上げるトピックスは、銀河(遠方銀河、形成、進化、星形成活動、分類、活動銀河核、構造など)、銀河系(銀河系中心、渦状構造、分子雲形成、星形成は、超新星残骸など)、星形成領域(フィラメント歌成、高密度コア形成など)、巨大ブラックホール等の観測的研究及び電波望遠鏡、超伝導電波カメラMKID、ヘテロダイン受信機、デジタル分光計、アンテナ鏡面測定法等の観測装置・観測手法などについてである。また、各自の研究課題について発表し議論することで、修士論文の研究を進展させる。	01BC432と同一。 社会人に限る、対面 (オンライン併用型)

OAJDC14	宇宙観測セミナーIV	2	1.0	2	秋ABC	応談	久野 成夫, 橋本 拓也, 本多 俊介	上げるトピックスは、銀河(遠方銀河、形成、進化、星形成活動、	01BC433と同一。 社会人に限る. 対面 (オンライン併用型)
---------	------------	---	-----	---	------	----	------------------------	--------------------------------	---

科目番号	科目名	授業	単位数	標準 履修	実施学期	曜時限	担当教員	授業概要	備考
	原子核理論セミナー【	方法	1.0	4次	春ABC	応談		原子核物理学の理論的なアプローチの方法を扱う教科書について 輪誌・セミナーを行う。原子核の微視的性質を理解するための数 学的な手法特にGreen関数について理解する。また、それらの適用 例を通して原子核の基本的な性質を理解する。Green関数はGell- Mann and Low の定理に基づいて導入し、オブザーバブルの計算例 やしehmann 表示の導入を通してGreen関数の物理的な意味を理解す る。そのうえで、系統的な摂動計算のためにWick の定理の証明を 理解する。そして、Feynman 図形の導入とDyson 方程式、自己エ ネルギー部分を学ぶ。応用例として、Hartree-Fock平均場近似の 導出を行い、また、縮退電子ガスの基底状態のエネルギーを計算 する。	01BC478と同一。 対面
OAJDDO7	原子核理論セミナーⅡ	2	1.0	1	₹火ABC	応談	原子核論担当教員(前期)	原子核理論セミナーIに続いて、原子核物理学の理論的なアプローチの方法を扱う教科書について輸読・セミナーを行う。原子核の動的な性質として振動運動の微視的な理解を進める。Green関数に基づいた方法により原子核の線形応答を計算することで、振動運動のエネルギーを計算する方法を理解する。核カの一般的な特徴を学習した上で、平均場模型に基づいて核内対相関の効果を学ぶ。振動運動を扱うTamm-Dancoff 近代や乱雑位相近似 (RPA) を、運動方程式の線形化から導出する。また、Green関数の形式において分極関数の極に着目することでもRPA方程式を導出し、その物理的な内容について理解する。	対面
OAJDD08	原子核理論セミナー!!!	2	1.0	2	春ABC	応談	原子核論担当教員(前期)	原子核物理学の理論的なアプローチの方法を扱う教科書について 輪続・セミナーを行い、原子核の基本的な性質について理解す る。原子核の性質を観測するうえで必要となる原子核からの電磁 波 (7 線) の放射について理解する。原子核の電磁的遷移の情報か ら得られる振動運動・回転運動や原子核の変形についての情報を 理解するために集団運動模型を導入する。模型から得られるエネ ルギースペクトルの分布から原子核の形・振動の型についての理 解を深める。	社会人に限る。対面(オンライン併用型)
OAJDDO9	原子核理論セミナーIV	2	1.0	2	秋ABC	応談	原子核論担当教員(前期)	原子核物理学の理論的なアプローチの方法を扱う教科書について 輪誌・セミナーを行い、原子核の多様な性質について理解する。 現象論的な一粒子(球形、変形)ポテンシャルによる描像から、有 効核力に基づく微視的なHartree-Fock法による理解へと進める。 さらに、核内対相関を考慮したHartree-Fock-Bogoliubov法による 一般化された平均場描像により原子核の基底状態の性質を理解す る。さらに、原子核の特徴的な運動である核分裂について、液滴 模型や二中心模型による記述を学び、微視的な時間依存Hartree- Fock (TDHF) 法を理解する。	社会人に限る. 対面(オンライン併用型)
OAJDD16	原子核実験セミナーⅠ	2	1.0	1	春ABC	応談	原子核実験担当教員(前期)	原子核実験研究に必要な実験技術・装置、また原子核反応機構、 原子核構造、原子クラスターに関して実験的側面から必要な基本 的かつ重要な事項をセミナー形式で学ぶ。	社会人に限る. 対面 (オンライン併用型)
OAJDD17	原子核実験セミナーⅡ	2	1.0	1	秋ABC	応談	原子核実験担当教員(前期)	原子核実験研究に必要な実験技術・装置、また原子核反応機構、 原子核構造、原子クラスターに関して実験的側面から必要な基本 的かつ重要な事項をセミナー形式で学ぶ。	社会人に限る. 対面 (オンライン併用型)
OAJDD18	原子核実験セミナーIII	2	1.0	2	春ABC	応談	原子核実験担当教員(前期)	原子核実験研究に必要な実験技術・装置、また原子核反応機構、 原子核構造、原子クラスターに関して実験的側面から必要な基本 的かつ重要な事項をセミナー形式で学ぶ。	社会人に限る. 対面 (オンライン併用型)
OAJDD19	原子核実験セミナーIV	2	1.0	2	秋ABC	応談	原子核実験担当教員(前期)	原子核実験研究に必要な実験技術・装置、また原子核反応機構、 原子核構造、原子クラスターに関して実験的側面から必要な基本 的かつ重要な事項をセミナー形式で学ぶ。	社会人に限る.対面 (オンライン併用型)

専門科目	(物性物理分野)-社会人	対象科目	目-						
科目番号	科目名	授業方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJDE20	物性理論セミナーI	2	1. 0	1	春ABC	応談	物性理論担当教員(前期)	物性物理学の基礎的理論を、セミナー形式で勉強する。	社会人に限る.対面(オンライン併用型)
0AJDE21	物性理論セミナーII	2	1. 0	1	秋ABC	応談	物性理論担当教員(前期)	物性物理学の基礎的理論を、セミナー形式で勉強する。	社会人に限る. 対面 (オンライン併用型)
0AJDE22	物性理論セミナーIII	2	1.0	2	春ABC	応談	物性理論担当教員	物性物理学の基礎的理論を、セミナー形式で勉強する。	社会人に限る. 対面 (オンライン併用型)
0AJDE23	物性理論セミナーIV	2	1.0	2	秋ABC	応談	物性理論担当教員	物性物理学の基礎的理論を、セミナー形式で勉強する。	社会人に限る. 対面 (オンライン併用型)
OAJDE24	物性実験セミナーI	2	1.0	1	春ABC	木5	物性実験担当教員 (前期)	物性物理学の実験的側面を、セミナー形式で勉強する。磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性などの物性物理学の実験分野の発表について、発表の要点をまとめることを通して、物性物理に関する理解を深める。	社会人に限る. 対面
OAJDE25	物性実験セミナーII	2	1.0	1	秋ABC	木6	物性実験担当教員(前期)	物性物理学の実験的側面を、セミナー形式で勉強する。大学院生による物性実験の研究発表を聞くことによって、半導体物性、磁性物性、表面物性、光誘起物性、低温物性、構造物性などの物性物理学の実験分野について、自分の研究とは異なる分野の研究がどのような目的で、どのような手法で行われているのかを理解する。	社会人に限る. 対面
OAJDE26	物性実験セミナーIII	2	1.0	2	春ABC	木5	物性実験担当教員	物性物理学の実験的側面を、セミナー形式で勉強する。磁性物理学、低温物理学、エネルギー物質科学、構造科学、ナノフォトニクス、光ナノ物性などの物性物理学の実験分野の発表について、発表の要点をまとめることを通して、物性物理に関する理解を深める。	社会人に限る。対面
0AJDE27	物性実験セミナーIV	2	1.0	2	秋ABC	木6	物性実験担当教員(前期)	物性物理学の実験的側面を、セミナー形式で勉強する。半導体物性、磁性物性、表面物性、光誘起物性、低温物性、構造物性などの物性物理学の実験分野の大学院生による研究発表を聞くことによって、自分のプレゼン能力を高める。また、発表の要点を理解し、議論する能力を高める。	社会人に限る. 対面 (オンライン併用型)

物性物理分野(放射光物質科学コース)-社会人対象科目-

カルコの生	カギ(水がルが食作する	ハ / 1	エエハノ	1) 35/17					
科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
0AJDJ12	放射光物質科学特論[3	1. 0	2	春ABC	随時	西堀 英治,守友	特別研究に沿った研究テーマで放射光を利用した研究計画を策定する。大学院生が課題申請可能である場合には、課題採択を目指す。申請内容のプレゼン、コース教員による申請書添削、等を含む。	業. 社会人に限る. 対

専門科目(プラズマ物理分野)-社会人対象科目-

科目	番号	科目名	授業方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAJDI	- 11	プラズマセミナーI	2	1.0	1	春ABC	応談		は、プラズマについての基礎過程(気体論、荷電粒子の運動、プラズマ生成など) やプラズマの巻動について、また核融会プラズマや	
OAJDI	-12	プラズマセミナー!!	2	1. 0	1	秋ABC	応談			社会人に限る 講義の実施形態につい ては今後決定する。
OAJDI	- 13	プラズマセミナー!!!	2	1.0	2	春ABC	応談			社会人に限る 講義の実施形態につい ては今後決定する。

0AJDF14	プラズマセミナーIV	2	1.0	2	秋ABC	応談	プラズマ担当教員	プラズマセミナーIIIに引き続き、ブラズマ物理学について、セミナー形式で学ぶ。テーマとしては、核融合を指向したプラズマにおける、周辺プラズマやダイバータプラズマ、またプラズマと材料との相互作用について学ぶ。関連する項目として、水素リサイクリング、原子・分子過程、シースプラズマなどを学び、また低温プラズマ計測についても学ぶ。	講義の実施形態につい ては今後決定する。
---------	------------	---	-----	---	------	----	----------	--	-------------------------