理工情報生命学術院共通専門基盤科目

科目一覧(理工情報生命学術院共通専門基盤科目)

科目番号	科目名	授業 方法	単位数	標準 履修 年次	実施学期	曜時限	担当教員	授業概要	備考
OAH0101	化学物質の安全衛生管 理	4	1.0	1 • 2	春AB	火3	佐藤 智生, 志賀 拓也, 山﨑 信哉, 小谷 弘明, 大好 孝幸	本講義では、化学物質の危険性と有害性を詳しく解説するとと もに、化学物質の生産、使用、廃棄時における環境安全衛生管 理に関する基礎的及び専門的知識と技術を解説する。この講義 を通して、化学物質に関わる研究や仕事をする場合に適切に行 動できる人材の育成を目指す。	対面
0AH0102	放射線科学―その基礎 理論と応用―	5	1.0	1 • 2	春AB	集中	坂口 綾, 山﨑 信哉, 古川 純	放射性同位元素や放射線をもちいた科学は、基礎・応用研究から実用まで現代社会を支える基盤技術の一つである。本科目では、「放射線を用いた最先端の科学」について講義する。さらに、筑波大学放射線初心者教育に準じた「放射線取扱に必要な法規」に関する講義と「放射線を取扱うための基礎技術」の実習を行う。実際に放射線量の測定や汚染検査を行い、放射線や放射性同位元素に対する理解を深める。	確認 場所:放射線・アイソ トープ地球システム研 究センターアイソトー
0AH0103	宇宙の歴史	1	1.0	1 • 2	秋B	集中	江角 三十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八	悠久不変と感じられる宇宙だが、そこにはビッグバンと呼ばれる大爆発から始まり、元素の生成、星・銀河の生成、太陽系や地球の誕生、生命の誕生・進化という壮大な宇宙の歴史(宇宙史)がある。現代の自然認識の根幹をなす「宇宙史」を、それぞれの分野の専門の教員による、オムニバス形式の講義シリーズにより解説する。	
OAH0111	計測標準学	1	1.0	1 • 2	秋AB	金5	小沢 顕, 金子 晋 久, 藤井 賢一, 清 水 祐公子, 高見澤 昭文, 田中 秀幸, 平井 亜紀子	計測標準や物理定数は全ての科学技術を支える基盤である。その体系とそこに用いられている精密で先進的な技術について解説する。特に電気量、時間、長さ、温度、質量などの計測標準と計測の評価等について詳述する。	対面かオンライン(オ
0AH0112	プレゼンテーション・ 科学英語技法	1	1.0	1 • 2	春季休業 中	集中	Sharmin Sonia	プレゼンテーション技術はあらゆる場面において求められる現代の重要なスキルである。本講義では、プレゼンテーションの基本技術と、国際会議等における英語を用いた論文発表や口述講演に必要な科学・技術英語の技法を学ぶ。具体的には、論の章立て、優れた論文の特徴、プレゼンテーションの準備、スライドの作成、効果的なプレゼンテーションにおける言語・非言語コミュニケーションの重要性について学ぶ。	オンライン(同時双方
OAH0113	Science in Japan I	1	1.0	1	秋AB	木6	Sellaiyan Selvakumar	今日の集積回路を構成する半導体デバイスの働きの基本概念の 導入。 (1)半導体材料、基本デバイス物理、pn接合、金属 - 半導体接 合とトランジスタ、バイポーラデバイス、金属酸化物半導体。 (2)半導体産業における単結晶としての半導体の拡大、結晶の 切断および研磨、ならびにウェハ製造。 (3)半導体の点欠陥、転位、原子拡散などの欠陥の基礎、およ びそれらが材料特性およびデバイス特性に与える影響。 (4)オプトエレクトロニクスの応用に関する欠陥。 (5)太陽光発電エネルギー開発と半導体産業における日本の課題 講義の最後に、他の先進材料に関する最近の傾向も説明する。	オンライン(オンデマ
0AH0114	Science in Japan II	1	1.0	1	春AB	水1	Science in Japan II 担当非常勤講師	日本はあらゆる科学技術分野において、基礎・応用科学の両方の研究が盛んである。本授業では、2次元物質、有機材料、スピントロニクス材料、半導体材料などの最先端研究を解説する。それぞれの研究から科学の基礎、基本を学び、推論、応用の知識を身につけるとともに、自身の学際的研究に役立たせることを狙いとする。	
OAH0201	美しい国土づくりへの 挑戦(I)	1	2. 0	1 • 2	春AB	水5, 6	岡本 直久,有田智一,谷口守	環境・エネルギー問題・少子高齢化・人口減少・国際都市化などの課題を踏まえた国土交通機能、観光、住宅・まちづくり分野における政策のあり方について、近年の具体的政策の紹介等を通じて理解を深めることを目的とする。我が国の国土、地域、都市の基盤を支え、経済と暮らしの安全・安心を実現する「放制を活動したいて持つれた現状認識力、意志決定能力を、承ぼす効果と影響を予測・評価する能力を修得するとともに、技術者と必要を表現・評価する能力を修得するとともに、技術者の会ことにつながるものである。このため、毎回国から第一線で政策に携わる関係者を迎えて講義を実施する。	型)

OAH0202	美しい国土づくりへの 挑戦(II)	1	2.0	1 • 2	秋AB	水5, 6	岡本 直久,有田智一,谷口守	我が国の社会・経済や日々の生活における都市および道路の役割を理解するとともに、そのマネジメントのあり方について考察を加えることの出来る能力を養うことを目的とする。我が回国土、地域、都市の基盤を支え、経済と暮らし安全・安にを実現する行政組織において培われた現状認識力、意志決定能力を、本研究科学生に広く伝えようとする本科目は、技術が社会に及ぼす効果と影響を予測・評価する能力を修得するとともに、技術者・研究者に対する社会的要請と技術者得理に対する社会的要請と技術者のことにつながるものである。このかめ、毎回国土交通省から第一線で政策に携わる関係者を迎えて講義を実施する。	型) オンライン(LIVE配
0AH0203	再生可能エネルギーエ 学	1	2. 0	1 • 2	秋AB	水1,2	安芸 裕久	現代社会において普及が期待されている再生可能エネルギーと その関連事項について学ぶ。基礎的な原理、最新の技術開発 向と課題、エネルギーインフラ・システムにおける役割、エネ ルギーシステム工学の基礎、ステークホルダーを含めた社会へ の影響や再生可能エネルギーを中心とした街づくりについて解 説する。再生可能エネルギーの現状と課題について多角的な視 点から分析・理解し、エネルギー・環境問題を解決できる能力 を身に付けることを目的とする。	いて学ぶ意欲があれば、所属に関わらず、 様々な専門分野からの 受講を歓迎する。 オンライン(対面併用
OAHO2O4	リスク・レジリエンス 工学概論	1	1.0	1:	春AB	月3	青幸三亮木一木子チ靖谷誠通秋創橋 以柳広面悟下別川美岡綾司西祐川成 板生海和齊陽田宏佳島子学出太尚CUI 福智高成藤平野/遠敬伊梅陸北川成 CUII 以下了一次 以下了一、 以下了一、 以下了一、 以下了一、 以下一 以下一 以下一 以下一 以下一 以下一 以下一 以下一 以下一 以下一	リスク・レジリエンス工学の対象とする範疇は環境・エネルギー、都市防災減災、情報セキュリティをはじめとして多岐に 亘る。また、それらを支える基礎理論も視野に入れなければならない。そのため、リスク・レジリエンス工学に係る専門分野を修得するためには自分自身の専門のリスク・レジリエンス工学に係る専門分野学を修得するためでは自分は関連では、リスク・レジリエンスの定義、様々な分野におけるより、レスクとレジリエンスの定義、様々な分野におけるリスク、レジリエンスの定義、様々な分野におけるリスク、レジリエンスの実践させるための問題点と課題・解決手法について、実践的な実例を取り上げながら講述し、分野ごとの多様性と差違で理解する。本授業科目とリスク・レジリエンス工学基礎とでリスク・レジリエンス工学の俯瞰的な視野を涵養する。	対面
OAH0205	ICT社会イノベーション 特論	4	2.0	1 - 2	秋AB	木5, 6	庄野 和宏 他	この授業は、産業界から招いた講師による講義や演習を通して、ICTを活用して「イノベーションを起す人材」を育てることを目指すものである。授業は概説編と演習編から構成される。概説編では、国内外の様々なイノベーションを起こすための参考に、社会やビジネスにおいてイノベーションを起こすためのまりなの課題に対して、フィールドワークを通して、身のまわりの課題に対して、フィールドワークからサービスモデルの提案までを実践する。このプログラムはNPO法人CeFIL デジタルビジネスイノベーションセンター(DBIC)の支援を受けて実施する。DBICはデジタルトランスフォーメーション(DX)とソシアルイノベーションプロジェクト を推進する団体で、2014年設立、金融・保険・製造・IT・航空・郵便・鉄道など大手企業31法人が会員として名を連ねている。	
OAH0206	計算科学リテラシー	1	1.0	1 • 2	春季休業 中	集中	川 耕司,大谷 実,石塚 成人,亀田	計算科学から科学諸分野を分野横断的かつ包括的に捉える大局的な視点を与えることを目指す。また、計算科学を支える最新の計算機技術についても概説する。	

0AH0207	Computational Science Literacy	1	1.0	1.2	秋C春季 休業中	集中	日下博幸,中務 書,中務 書,共新司,人,等 明 場成高。 大 の の が の の が た の の の の の の の の の の の の の	Computational science, which opens up unexplored areas of science through numerical analysis using ultra-high performance computers, is an important and cutting-edge research tool that ranks alongside experiment and theory, and its importance is increasing. In order to explore the future of science, it is essential to acquire basic knowledge and methodology of computational science, which can be called "reading and writing" or literacy. This lecture is an introduction to computational science, which is the literacy for the future of science. Faculty members of the Research Center for Computational Science will give an overview of research in computational science in various fields, and aim to give a broad perspective on various scientific fields from computational science in a crossdisciplinary and comprehensive manner. The latest computer technologies supporting computational science will also be outlined.	英語で授業。 対面 (オンライン併用型)
0AH0208	計算科学のための高性 能並列計算技術(日本 語)	1	1.0	1 • 2	夏季休業 中	集中	朴 泰祐. 建部 修見. 高橋 大介. 額田 彰. 多田野 寛人. 藤田 典久	計算科学を支える大規模シミュレーション、超高速数値処理のためのスーパーコンピータの主力ブラットフォームは最新のマイクロブロセッを用いた並列計算機となっている。ところが、大規模な並列計算機は、高い理論ピーク性能を示す一方で、実際のアプリケーションを高速に実行することは容易なことではない。この講義は、計算機の専門でない、高速な計算を必要とする計算科学のユーザが並列計算機の高い性能を十二分に活用するために必要な知識、プログラミングを学ぶことを的とする。これは、公開セミナーと同時に行われ、計算科学リテラシーの上級コースである。	対面
0AH0209	High Performance Parallel Computing Technology for Computational Sciences	1	1.0	1 • 2	秋C	集中	朴 泰祐. 建部 修見, 高橋 大介, 寶田 , 藤田 典久	High performance computing is the basic technology needed to support today's large scale scientific simulations. It covers a wide variety of issues on hardware and software for high-end computing such as high speed computation, high speed networking, large scale memory and disk storage, high speed numerical algorithms, programming schemes and the system softwares to support them. Current advanced supercomputer systems are based on large scale parallel processing systems. Nowadays, even application users are required to understand these technologies to a certain level for their effective utilization. In this class, we focus on the basic technology of high-end computing systems, programming, algorithms and performance tuning for application users who aim to use these systems for their practical simulation and computing.	英語で授業。対面
0AH0210	機械工作序論と実習	5	1.0	1 • 2	夏季休業 中	集中	江並 和宏	「ものづくり」の原点である機械工作の知識と経験を深めるため、機械工作の基礎および切削加工の基本を講義する。工作部門において旋盤とフライス盤加工実習を行い、操作の基本を学ぶ、合格者には工作部門公開工作室使用許可を与える。	
OAH0301	地球進化学概論	1	1.0	1 • 2	通年	集中	角替 敏昭	地球史における地球表層および内部の進化プロセスについて講義する。地球進化学的な視点から地球の表層 (たとえば地層、地殻、大陸の形成、生物の進化と絶滅、付加体の形成、プレト運動など)、および内部(地球の層状構造の形成、地震の発生、	

OAH0303	環境放射能動態解析論	1	1.0	1 • 2	春AB	木1	恩林 不 , 決	原発事故等に伴って環境中に放出された放射性核種について、その拡散、沈着、移行過程と水・物質循環との関わりを理解するとともに、環境影響評価のためのモニタリング手法およびモデリング手法を紹介する。	
0AH0304	地理空間情報の世界	1	1.0	1 · 2	秋AB	火2	山下 亜紀郎, 呉羽 正昭, 堤 純, 松井 圭介, 森本 健弘, 久保 倫子	地図と地理空間情報を用いた基礎的・応用的研究について講義 する。アナログ情報としての地図の歴史、日本や諸外国におけ る都市や農村を対象としたさまざまな地図の特徴について解説 する。また、観光や防災・環境など特定の主題をか地図の 表現法や研究への活用などについて解説する。デジタル情報と しての地理空間情報の仕組みや普及・発展の歴史、地理学や関 連諸分野におけるそれらを活用した具体的な地域分析手法や研 究事例について紹介する。	
OAH0305	生物科学オムニバス特講	1	1. 0	1 • 2	秋A	集中	岡法 東京 東京 東京 東京 東京 東京 東京 東之 東京 東之 東京 東之 東京 東之 東京 大子 大子 東京 大子 大子 東京 大子 大子 東京 大子 大子 東京 大子 大子 東京 大子 大子 大子 東京 大子 大子 大子 東京 大子 大子 大子 東京 大子 大子 東京 大子 大子 大子 東京 大子 大子 東京 大子 大子 東京 大子 大子 東京 大子 大子 東京 大子 大子 大子 東京 大子 大子 大子 大子 大子 大子 大子 大子 大子 大子	生命の基本原理や生物界の多様性を理解することを目的として、特に、先端細胞生物科学、ならびに、先端分子生物科学における総論的な教養教育の講義を実施する。国内の著名な研究機関において先端的な生命科学の方法論を用いて行われている最前線の研究をオムニバス形式で紹介する。	オンライン(同時双方向型)
0AH0306	多様な生物の世界	1	1.0	1 • 2				生命の基本原理や生物界の多様性を理解することを目的として、系統分類・進化学、生態学、植物発生・生理学、動物発生・生理学、分子細胞生物学、ゲノム情報学、先端細胞生物科学、先端分子生物科学における総論的な教養教育の講義を実施する。生命の樹(生物界全体の系統樹)を視野に、生物界の多生性の実態とそれを生み出した系統進化の歴史を解明しようとする最前線の研究を紹介する。当該分野の最新、かつ、幅広い知識を習得することで、理論的な思考を養い、専門領域を超えた自らの研究能力の向上に役立てる。	西曆偶数年度開講。 対面
OAH0307	生物の進化	1	1.0	1 • 2	秋A	集中	和田 洋,守野 孔明	生命の基本原理や生物界の多様性を理解することを目的として、系統分類・進化学、生態学、植物発生・生理学、動物発生・生理学、サクラー 生理学、サクラー 生理学、大学組織を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	西暦奇数年度開講。 対面(オンライン併用 型)
0AH0308	生命を司る分子メカニ ズム	1	1.0	1 · 2				生命の基本原理や生物界の多様性を理解することを目的として、系統分類・進化学、生態学、植物発生・生理学、動物発生・生理学、分子細胞生物学、ゲノム情報学、先端細胞生物科学、先端分子生物科学における総論的な教養教育の講義を実施する。生命のセントラルドグマを中心とした多様な分子ケードによって生み出される生命の遺伝、代謝、調節機構を解明しようとする最前線の研究を紹介する。当該分野の最新、かつ、幅広い知識を習得することで、理論的な思考を養い、専門領域を超えた自らの研究能力の向上に役立てる。	西曆偶数年度開講。
OAH0309	生命の基本単位	1	1.0	1 - 2	秋B	集中	中田 和人,石川香	生命の基本原理や生物界の多様性を理解することを目的として、系統分類・進化学、生態学、植物発生・生理学、動物発生・生理学、分子細胞生物学、ゲノム情報学、先端細胞生物科学、先端分子生物科学における総論的な教養教育の講義を実育する。細胞は生命の基本単位であり、その理解は生物学の根幹となる。この細胞の形態と機能の相関を解明しようとする最前線の研究を紹介する。当該分野の最新、かつ、幅広い知識を習得することで、理論的な思考を養い、専門領域を超えた自らの研究能力の向上に役立てる。	西暦奇数年度開講。 対面(オンライン併用 型)

0AH0310	サイエンスコミュニ ケーション特講	4	1.0	1 • 2	春B	集中	ウッド マシュー クリストファー	This course introduces the practice of science communication and its roles in the the complex relationship between science and society. Through a series of active discussion-based classes, we will review the foundational theories of science communication, and examine the practices, relevance and importance of science communication in the modern world.	Identical to 01AA010. 要望があれば英語で授 業. 対面
0AH0311	生物資源科学研究法	1	1.0	1	春AB	金4	古川 誠一, 田中 俊之, 田中 俊之, 世母 一, 滋 一, 五十 一, 滋 一, 五十 一, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一	生物資源科学の基盤を形成する学問体系を紹介するとともに、 当該関連分野の基本的な知識と様々な研究手法について学ぶ。 生物資源科学分野の最新、かつ、幅広い知識を系統的に学習す ることで、理工情報生命学術院における研究課題の設定と計画 の立案・遂行に必要な基礎的な知識と能力の向上に役立つ。	For students of the Agro-biological Resources degree program, this will be the Agro-biological Resources course. The class format will be announced on manaba etc.
	国際生物資源科学研究 法(Introduction to International Agro- Bioresources Sciences and Technology)	1	1.0	1	春C	水1, 2	首藤 外人、竹下 典男、杉本 卓康 外川 阿郎 テースエル 東原 一京 エース・マース・マース・マース・マース・マース・マース・マース・マース・マース・マ	生物資源科学の基盤を形成する学問体系を紹介するとともに、 当該関連分野の基金的な知識と様々な研究手法について学ぶ。 国際的な視座から生物資源科学分野の最新、かつ、幅広い知識 を系統的に学習することで、理工情報生命学術院における研究 課題の設定と計画の立案・遂行に必要な基礎的な知識と能力の 向上に役立つ。授業は英語で行う。	For students of the Agro-biological Resources degree program, this will be the Agro- biological Resources course. 対面(オンライン併用 型)
0AH0313	農林生物学特別講義[1	1.0	1 • 2	秋B	集中	古川 誠一	農林生物学領域の植物育種学、作物学、蔬菜・花卉学、果樹生 産利用学、動物資源生産学、発現・代謝ネットワーク制御学、 エピジェネティクス、植物寄生菌学、応用動物昆虫学、森林生 態環境学、地域資源保全学、土壌環境化学などに関連する基本 的な知識と様々な研究手法について学ぶ。当該領域の最新、か つ、幅広い知識を体系的に学習することで、理工情報生命学術 院における研究課題の設定と計画の立案・遂行に必要な基礎的 な知識と能力の向上に役立つ。	For students of the Agro-biological Resources degree program, this will be the Agro-biological Resources course. 対面(オンライン併用型)
0AH0314	農林社会経済学特別講 義 I	1	1.0	1 • 2	秋C	集中	興梠 克久	農林社会経済学領域の生物資源経済学、国際資源開発経済学、 農業経営学及び関連産業経営学、農村社会・農史学、森林資源 経済学、森林資源領報計測制御学、食品品質評価工学、国際生物 資源循環学に関連する今日的な課題を整理し、拠りどころらとす べき専門分野の学術的な基礎について講述する。当該分野の最 新、かつ、幅広い知識を系統的に学習することで、理工情報生 命学術院における研究課題の設定と計画の立案・遂行に必要な 基礎的な知識と能力の向上に役立つ。	For students of the Agro-biological Resources degree program, this will be the Agro- biological Resources course. 対面
OAH0315	生物環境工学特別講義[1	1.0	1 - 2	夏季休業 中	集中	小林 幹佳	生物環境工学領域の環境コロイド界面工学、生物資源変換工学、流域保全工学、水利環境工学、生産基盤システム工学、生物生産機械学、保護地域管理学、食資源工学、生物材料化学、生物材料工学、農産食品プロセス工学に関連する基本的な知識と様々な研究手法について学ぶ。生物資源の調和の・持続例の研究成果を例に挙げながら紹介する。当該分野の最新、かつ、幅広い知識を系統的に学習することで、理工情報生命学術院における研究課題の設定と計画の立案・遂行に必要な基礎的な知識と能力の向上に役立つ。	Resources degree program, this will be the Agro- biological Resources course.
0AH0316	Introduction to Environmental Sciences	1	2. 0	1	秋AB	水1, 2	環境科学学位プログラム担当教員、 水野谷 剛	環境に関わる地球規模課題に関し、水文学、生物学、生態系科学、分析化学、気候システム科学、都市工学、環境工学、社会科学、環境健康リスクなど、理工・情報・生命研究群全体を包括する多面的な観点から環境科学の基礎および応用を学ぶ。さらに地域から地球規模まで異なるスケールにおいて、環境科学に関する知識と環境問題の解決法の統合的な見方を養う。	と同時履修を原則とす る. 英語で授業。

OAH0317	山岳教養論	1	1.0	1 - 2	秋A	集中	津田 吉晃	世界の陸地の20~25%は山岳地域で、地球上の約12%の人が山岳地域に住み、40%の人が山の中・下流部に住んでいるといわれている。人々は、山岳を構成する多様な景観空間に応じて、様々な仕事や生活を営んできた。加えて、近年では、山岳地域には観光やリクリエーションの対象としての価値が付加されている。本講義では産・官・学・民など様々な立場で山岳の現場で活躍する方のオムニバス形式の講義を通じて、山岳はどんなところか、どんな問題があるのか、どんな人材が求められるか、をより深く理解し、山岳科学の幅広い知識を養うことを目的とする。	ムの学生においては必 修科目
OAH0318	Topics and Issues in Science Communication	1	1.0	1 • 2	春C	集中	ウッド マシュー クリストファー	This course explores Science Communication as an academic field of study and research. We will examine a series of issues which regularly draw the attention of science communication scholars, along with current topics in science communication research. Through active participation in class discussions and contribution to course content, students will become more familiar with both the breadth and nature of the field of science communication.	対面
OAH0319	科学技術社会論入門	4	1.0	1	通年	集中	和田 洋	科学という営みそのものを改めて捉え直し、さらには科学と社会との接点で発生する論点をディスカッション形式で深掘りする。「科学的証明」とは何か? 科学において求められる再性とは? 研究はどこまで進んだら論文にまとめる? などの問を異分野の学生間でディスカッションして、科学という営みを俯瞰的に捉えることを目指す。	対面