## 基礎科目(フロンティア医科学関連科目)

| 科目番号    | 科目名        | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期     | 曜時限   | 教室              | 担当教員                                                                     | 授業概要                                                                                                                                                                                                                                                                                        | 備考                    |
|---------|------------|----------|------|------------|----------|-------|-----------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| OATGA11 | 人体構造学概論    | 1        | 2. 0 | 1          | 春AB      | 水1, 2 |                 | 志賀 隆, 首藤 文<br>洋, 增田 知之, 濱<br>田 理人                                        | 目標:人体を構成する各器官の構造について、構成する細胞と組織を含めて理解する。人体を構成する器官(運動器、神経系、感覚器、内分泌系、循環系、呼吸器系、消化器系、泌尿生殖器系)の特徴について機能と関連づけて論じることができる。                                                                                                                                                                            |                       |
| OATGA12 | 人体構造学実習    | 3        | 1.0  | 1 • 2      | 夏季休業 中   | 集中    | 4A111           | 志賀 隆, 増田 知之                                                              | 目標:人体を構成する運動器、神経系、内臓の構造について理解する。人体を構成する各種器官について、全身における相互の位置関係を含めて論じることができる。                                                                                                                                                                                                                 | 9/17, 9/18            |
| OATGA13 | 臨床医学概論     | 1        | 2.0  | 1          | 秋AB      | 火1, 2 | 4F204           | 正田 純一, 新井哲明, 川上康, 崇大武二, 竹越一, 博, 千葉 滋, 西山博, 大葉 滋, 英雄, 松本功, 森健作, 磯和工, 大原佑介 | 臨床医学の実践は病める人を対象とする。その<br>人の持つ医学的問題点を明らかにし、対応策を<br>講じる。考え得る治療法の中から、その人の価<br>値観と決定に従って最善のものを実行する。<br>目標: 医学及び医療の果たすべき社会的役割を<br>認識しつつ、一般的な診療において頻繁に関わ<br>る負傷又は疾病に適切に対応できるよう基本的<br>な診療能力を身に付ける。同時に患者さんの思<br>いを理解する。                                                                             | 02RE621と同一。           |
| OATGA14 | 医科学特講      | 1        | 1.0  | 1 - 2      | 夏季休業中    | 応談    |                 | 入江 賢児                                                                    | 目標:最先端医学研究について理解を深め、ヒトの各種疾患や病態を理解する。また、その研究で用いられている最新の研究手法を自身の研究に活かすことを目的とする。最先端の研究成果を理解し説明できる。<br>医学研究の最先端や基礎医学、臨床医学、社会医学の境界を越えた学際的なテーマについてのトピックスを取り上げ、希望によりコースを選択して学習する。各教員が研究者としてどの様なテーマに取り組んでいるかを学びながら、問題点を的確にとらえ、解決するための方法論、その評価法、現代医学の限界や今後の展望について学習する。                               | 9/7-9/11              |
| OATGA15 | 医情報処理学特論   | 1        | 1.0  | 1          | 春AB      | 金6    | 4F204           | 大原 信                                                                     | 目標:「電子カルテ」システムの概要について理解する。医療情報とその処理技術が、いかに我が国の現代医療を支え、病院機能並びに、医療安全を支えているかを理解する。現在の我が国の医療の今日的課題に医療情報とその処理技術がいかに役立つかを論じることができる。イントロダクション・総論で解説を行った後、医療と個人情報保護、病院情報システム概説について解説する。また、附属病院医療情報経営戦略部を見学後、「電子カルテ」システムについて、地域連携システムおよび医療情報システム標準への課題について解説する。さらに、医療安全のITの活用事例について解説した後、最後に総合討論を行う。 |                       |
| OATGA16 | 医学英語Ⅰ      | 1        | 1.0  | 1          | 春A<br>春B | 月2    | 4F204,<br>4F305 | 宮増 フラミニア,<br>マティス ブライ<br>アン ジェームズ,<br>メイヤーズ トー<br>マス デイヴィッ<br>ド          | 英語を用いた国際的な科学コミュニケーションスキルを習得し、他の科学者と知識や考えを共有できる英語能力を身に着ける。講義はすべて英語で行うためリスニング能力の向上も図る。本コースは4つのモジュールから成る。(1)科学コミュニケーションの基礎(2)記述(3)プレゼンテーション(4)マルチメディアコミュニケーション                                                                                                                                 | 英語で授業。                |
| OATGA17 | 医学英語[[     | 1        | 1.0  | 1          | 秋A<br>秋B | 月5    | 4F204,<br>4F305 | 宮増 フラミニア,<br>マティス ブライ<br>アン ジェームズ,<br>メイヤーズ トー<br>マス デイヴィッ<br>ド          | 英語を用いて他の科学者へ自身の意見を伝え、<br>双方向性のコミュニケーション(ディスカッション)できる英語能力を身に着ける。 医学英語IIでは特に医学分野に特化した表現技法の習得を目的とする。講義はすべて英語で行うため、リスニング能力の向上も図る。<br>本コースは4つのモジュールから成る。<br>(1) 医学分野における科学コミュニケーションの基礎<br>(2) 記述 (scientific writing)<br>(3) ブレゼンテーション (scientific presentation)<br>(4) マルチメディアコミュニケーション         | OAVC013と同一。<br>英語で授業。 |
| OATGA18 | 研究マネジメント基礎 | 4        | 1.0  | 1          | 春C       | 応談    | 4F204           | 橋本 幸一                                                                    | 目標:研究開発を中心とした各種プロジェクトの<br>推進に必要な様々な基礎専門知識とスキルの基<br>礎を習得する。自分自身の修士論文研究の研究<br>計画の立案、マイルストーンの設定ができる。<br>また、研究推進のためのマネジメントができ<br>る。                                                                                                                                                             | 02RE306と同一。           |

| 科目番号    | 科目名                      | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期 | 曜時限  | 教室    | 担当教員                                   | 授業概要                                                                                                                                                                                                                                                                                                | 備考                                 |
|---------|--------------------------|----------|------|------------|------|------|-------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| OATGA19 | 医科学特別演習                  | 2        | 8. 0 | 2          | 通年   | 応談   |       | フロンティア医科<br>学学位プログラム<br>各教員            | 修士論文を作成するための研究の実践および指導を行い、論文指導を行う。                                                                                                                                                                                                                                                                  | 英語で授業。                             |
| OATGA21 | インターンシップI                | 2        | 1.0  | 1 • 2      | 通年   | 応談   |       | フロンティア医科 学学位プログラム                      | 病院、医学研究機関、企業などに自ら交渉して申し込み、インターンシップ委員会の承認を受けてからインターンシップを行う。インターンシップ拠点として契約された施設の中から、学生が選択してインターンシップを行うことも可能である。社会での体験をもとに、医科学に求められている役割や自身の今後のキャリアについて考察する。                                                                                                                                          |                                    |
| OATGA22 | インターンシップII               | 2        | 1.0  | 1 • 2      | 通年   | 応談   |       | フロンティア医科 学学位プログラム                      | 病院、医学研究機関、企業などに自ら交渉して申し込み、インターンシップ委員会の承認を受けてからインターンシップを行う。インターンシップ拠点として契約された施設の中から、学生が選択してインターンシップを行うことも可能である。社会での体験をもとに、医科学に求められている役割や自身の今後のキャリアについて考察する。                                                                                                                                          |                                    |
| OATGA23 | 基礎医科学演習                  | 2        | 3.0  | 1          | 通年   | 応談   |       |                                        | 修士論文研究の遂行上必要となる先端的な研究<br>論文を紹介すると共に、討論することによって<br>自身の研究戦略を明確にすることを目的とす<br>る。学生は所属する各研究グループの研究につ<br>いて、以下のことを修得する。<br>(1)修士論文研究に関連する文献を収集し、その<br>内容について正しく理解し、分析することを学<br>ぶ。<br>(2)文献の内容についてまとめ、発表・討論する<br>ことを修得する。<br>(3)自身の研究に必要なプロトコールを作成し、<br>研究を組み立てることを学ぶ。<br>所属する研究グループとその専門分野は以下の<br>とおりである。 | 英語で授業。                             |
| OATGA24 | 留学生セミナー                  | 1        | 1.0  | 1 • 2      |      |      |       |                                        | 留学生が日本での災害に備えることを目的とする。東京消防署での1日スキルトレーニングを含む2日間のフルセミナーに参加し、このコースを通して、防災の考え方と知識を学び、実践できる能力を身に着ける。                                                                                                                                                                                                    | 英語で授業。<br>2020年度開講せず。              |
| OATGA25 | 医科学セミナーV(キャ<br>リアパス)     | 1        | 1.0  | 1 · 2      | 通年   | 応談   | 4F204 | 賢児,松坂 賢,水野 聖哉,大川 敬子,田原 聡子,濱田 理人,渡邊 幸秀  | アカデミアや企業の医科学研究者育成だけでなく、サイエンスコミュニケーター、産官学マネージャー、医系事務官等、様々な分野の医療人育成を目指す。各方面で活躍している外部講師陣による講義・面談、及び、グループディスカッション・ライティングなどの実習を実施する。目標: 1. 自身の修士論文研究の目的や社会的意義を領域外の人に説明できる。 2. 自身の将来計画を説明ができ、その実現のための具体的方策を提言できる。 3. 自身のキャリアについて、社会人と意見交換することができる。                                                        |                                    |
| OATGA26 | 医科学セミナーVI (疫<br>学・生物統計学) | 1        | 2.0  | 1 • 2      | 通年   | 火6   |       | 我妻 ゆき子, 五所正彦                           | 疫学や生物統計学に関する講義の補完として、<br>疫学や生物統計学分野で活躍する第一線の研究<br>者が行う最新のトピックスに関する講義に参加<br>し、現場の最前線を知るとともに、疫学や生物<br>統計学の最新の研究成果について、自分自身の<br>研究分野との関連で議論する。また、原著論文<br>を担当を決めて紹介し、セミナー形式にてデイ<br>スカッションすることで学習効果を高める。<br>トピック: 疫学、生物統計学                                                                               | 英語で授業。                             |
| OATGA27 | 人体生理学特論                  | 1        | 1.0  | 1          | 春A   | 木4,5 | 4F204 | 小金澤 禎史,松本<br>正幸,山田 洋,國<br>松 淳          | 人体機能のメカニズムに関する様々なトピックを解説する。<br>目標:人体機能のメカニズムについてさまざまな観点から論じることができる。                                                                                                                                                                                                                                 | 02RE608と同一。<br>英語で授業。              |
| OATGA28 | 生化学特論                    | 1        | 1.0  | 1          | 春AB  | 月1   | 4F204 | 福田 綾,入江 賢児,久武 幸司,内田 和彦,水野 智亮,塩見 健輔,桝和子 | DNAの複製、転写、翻訳および代謝、細胞周期、細胞シグナル伝達などの分子基盤について解説する。<br>目標:人体機能の分子メカニズムについて論じることができる。                                                                                                                                                                                                                    | 02RE619, 0BTX111と同<br>ー。<br>英語で授業。 |
| OATGA29 | 国際実践医科学研究特<br>論 I        | 1        | 1.0  | 1 - 2      | 通年   | 応談   |       | 森川 一也, Ho<br>Kiong, 小金澤 禎<br>史         | 国際学術集会や短期のワークショップなどに参加し、自身の活動内容・研究成果を英語にて発表出来る能力を身につけ、かつ海外の担当者あるいは研究者と活動や研究に関して意見交換し、医科学の研究や実践に役立つ知識や視野を習得する。 1. 自身の活動や研究について英語で説明ができる。 2. 活動あるいは研究に関して海外の担当者あるいは研究者と意見交換ができる。                                                                                                                      | 英語で授業。                             |

| 科目番号    | 科目名                   | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期 | 曜時限 | 教室 | 担当教員                           | 授業概要                                                                                                                                                                                                                                                                                             | 備考     |
|---------|-----------------------|----------|------|------------|------|-----|----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| OATGA30 | 国際実践医科学研究特<br>論 I I   | 1        | 2. 0 | 1 • 2      | 通年   | 応談  |    | 森川 一也, Ho<br>Kiong, 小金澤 禎<br>史 | 国際学術集会や短期のワークショップなどに参加し、自身の活動内容・研究成果を英語にて発表出来る能力を身につけ、かつ海外の担当者あるいは研究者と活動や研究に関して知識や視野を習得する。さらに、海外の担当者あるいは研究者との短期間の協働研究、調査活動、技術トレーニング等の活動の中で修得した知識や技術を自らので受めだ国際的な活動あるいは研究の動向を、表えることができるようになる。 1. 自身の活動や研究について英語で説明ができる。 2. 活動あるいは研究に関して海外の担当者あるいは研究者と意見交換ができる。 3. 新しいキャリアを開拓できる。 3. 新しいキャリアを開拓できる。 | 英語で授業。 |
|         | 国際実践医科学研究特<br>論 I I I | 1        | 3.0  | 1 - 2      | 通年   | 応談  |    | 森川 一也, Ho<br>Kiong, 小金澤 禎<br>史 | 国際学術集会や短期のワークショップなどに参加し、自身の活動内容・研究成果を英語にて発表出来る能力を身につけ、かつ海外の担当換し、医科学の研究や実践に役立つ知識や視野を習得する。 複数箇所あるいは長期の主体的な国際活動を行い、その中で見出した医科学分野の発展やがきる視野を身につける。または新たな取り組みを提案し実行に移すことができる。 1. 自身の活動や研究について英語で説明ができる。 2. 活動あるいは研究に関して海外の担当者あるいは研究者と意見交換ができる。 3. 新しいキャリアを開拓できる。                                       | 英語で授業。 |

## -専門基礎科目(フロンティア医科学関連科目)

| 科目番号    | 科目名              | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期 | 曜時限      | 教室    | 担当教員                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 授業概要                                                                                                            | 備考          |
|---------|------------------|----------|------|------------|------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|
| DATGC32 | 人体病理学概論          | 1        | 2. 0 | 1          | 春AB  | 水5,6     | 4F204 | 野口 雅之,加藤<br>光保,長田 道夫,<br>鈴木 裕之,高屋敷<br>典生,加野 准子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 目標: ヒトの代表的な病気の概念と発病のメカニズムの基本を理解する。ヒトの病気の種類とそれぞれの成り立ちの概略を説明できる。                                                  | 英語で授業。      |
| DATGC33 | 実験動物科学特論・同<br>実習 | 1        | 2.0  | 1          | 春AB  | 金3-5     | 4F204 | 杉山 文博,水野<br>聖哉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 適正な動物実験と遺伝子改変マウスの作製を学習し、マウスの基本的な取り扱い、胚操作及びin vivoイメージング技術を習得する。<br>目標:ヒト疾病を研究するため遺伝子改変マウス利用について論じることができる。       | 英語で授業。      |
| DATGC34 | 内科学概論            | 1        | 2.0  | 1          | 秋AB  | 水7<br>木6 | 4F204 | 山和川祐英澤大田錦弥子, 所<br>東大康野千之藤一大田錦弥子, 所<br>東大康野千之藤一大田寺, 一大田寺, 一村村, 一大田寺, 一大田寺, 一大田寺, 一大田寺, 一大田寺, 一大田寺, 一大田寺, 一大田寺, 一大田寺, 一村, 一村, 一村, 一村, 一村, 一村, 一村, 一村, 一村, 一村 | 内科学、小児科学の概要について、特に成人、<br>小児の基本的疾患について疾患概念、発症機<br>序、診断、治療の概要について学ぶ。<br>目標:成人、小児の基本的疾患についてさまざ<br>まな観点から論じることができる。 | 02RE616と同一。 |
| DATGC35 | 外科学概論            | 1        | 1.0  | 1          | 秋AB  | 木5       | 4F204 | 佐藤昭, 并上直, 并上直, 平全股份, 在一个人, 上面, 一个人, 上面, 上面, 上面, 上面, 上面, 上面, 上面, 上面, 上面, 上面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 外科学の概要を、各科の基本的疾患を中心にそれらの疾患概念、疫学、発症機序、診断、治療の進歩について学ぶ。<br>目標:外科学の今日的課題をさまざまな観点から論じることができる。                        | 02RE617と同一。 |

| 科目番号    | 科目名                                     | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期 | 曜時限   | 教室    | 担当教員                                                                          | 授業概要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 備考                                         |
|---------|-----------------------------------------|----------|------|------------|------|-------|-------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| OATGC36 | ライフサイエンスにお<br>ける病態生化学                   | 1        | 2.0  | 1          | 秋AB  | 水3, 4 | 4F204 | 島野 仁,川上 康,<br>人見 重美,矢藤<br>繁,鈴木 浩明,鈴<br>木 裕之,関谷 元<br>博,中川 嘉,矢作<br>直也           | 代表的疾患のアップデートなトピックスを含め、病因、病態、診断、治療について、分子レベルあるいは遺伝子レベルまでほりさげて生化学的観点から学習する。特に生体内の代謝内分泌制御において重要な働きをもつホルモン・グナル分子について理解を深め、生命科学に必要な様々な生理と病態の理念を学ぶ。目標:臓器や領域を越えたサイエンスにれてもらいたい。生化学の今日的課題をさまざまな観点から論じることができる。                                                                                                                                                                                                                                                                                         |                                            |
| OATGC37 | 臨床検査総論                                  | 1        | 1.0  | 1 • 2      | 秋AB  | 金3    | 4F204 | 川上 康,磯部 和正,竹越一博,山内 一由,石津智子,加藤 貴康                                              | 最新の臨床検査医学に関連する項目を学び、臨床検査が医療と密接に関連することを理解する。<br>目標:臨床検査の今日的課題をさまざまな観点から論じることができる。                                                                                                                                                                                                                                                                                                                                                                                                             | 02RE618と同一。                                |
| OATGC38 | English Discussion &<br>Presentation I  | 2        | 2. 0 | 1 - 2      | 春AB  | 金1,2  |       | 入江 賢児,水野智亮,鈴木 裕之,須田 恭之                                                        | テレビ会議システムを使った国立台湾大学、京都大学との交流授業(分子細胞生物学に関する英語による講義と討論、英語による論文紹介と討論)を通して、生命科学の知識、および英語によるサイエンスコミュニケーション能力、プレゼンテーション能力を身につける。Iでは、分子細胞生物学をトピックとする。(1) タンパク質の立体配座、ダイナミクス、酵素学、(2) 転写、(3) 遺伝子発明におけおらも、(4) 遺伝子発現の制御動とが、(5)シグナル伝達、(6) 細胞の反応と環境要因への適応(II)――軽素、(7) 細胞の反応とと環境要因へのの適応(III)――発生、(8) 細胞の反応とと環境要因へのの適応(III)――発生、(8) 細胞の反応とと環境要因へのの適応(III)――発生、(8) 細胞の反応と環境要因へのの適応(III)――和胞の移動、(9) 細胞応答し環境要と環境要とのの適応(III)――細胞の移動、(9) 細胞応答し環境要と環境要とのの適応(IV)――細胞死、(10) 細胞が終している。III)学生による論文発表I、(12) 学生による論文発表II | 02RE101と同一。<br>英語で授業。                      |
| OATGC39 | English Discussion &<br>Presentation II | 2        | 2.0  | 1 • 2      | 秋AB  | 水1,2  |       | 入江 賢児, 加藤<br>光保, 川口 敦史,<br>高橋 智, 鈴木, 永野<br>之, 水野 智亮, 裕<br>田 恭之, 船越<br>司       | テレビ会議システムを使った国立台湾大学、京都大学との交流授業(分子細胞生物学に関する英語による講義と討論、英語による論文紹介と討論)を通して、生命科学の知識、および英語によるサイエンスコミュニケーション能力、プレゼンテーション能力を身につける。IIでは、がん生物学をトピックとする。(1)がん生物学、(2) RNA制御とその癌との関係、(3) 腫瘍ウイルス学、(4) テロメア生物学、(5) ゲノム不安定性のメカニズムとその癌との関連性、(6) がんのエビジェネティクス、(7) 癌はどのように成長しますか?、(8) 腫瘍の微小環境、(9) 癌細胞におけるシグナル伝達、(10) がんゲノミクス、(11) 癌研究における動物モデル                                                                                                                                                                  | 02RE102, 0AVC201と同一。<br>英語で授業。             |
| OATGC41 | 神経科学特論                                  | 1        | 1.0  | 1 • 2      | 春A   | 火・木7  |       | 柳沢 正史, 櫻井<br>武, 長瀬 博, 阿部<br>高志, 坂口 昌徳,<br>林 悠, Lazarus<br>Michael, 本城 咲<br>季子 | 神経科学分野において重要な論文を読み、内容を深く理解することで、基礎から応用までの幅広い知識を養う。<br>目標:原著論文を読みこなし、トピックについて論じることができる。さらに、英語によるプレゼンテーション能力が向上し、自分自身の研究分野においても英語で議論ができる。                                                                                                                                                                                                                                                                                                                                                      | 01RC105, 02RA185,<br>02RE602と同一。<br>英語で授業。 |
| OATGC42 | 神経科学英語                                  | 1        | 2.0  | 1          | 秋AB  | 応談    |       | 小金澤 禎史                                                                        | 神経科学研究における英語でのコミュコミュニケーションスキルを涵養する。<br>目標:本コースを通して、学生は以下のことを学ぶことを目的とする。<br>・神経科学研究のコンセプトとコミュニケーションの基礎的原理<br>・科学交流の基礎的な概念およびコミュニケーション方法・<br>・コ頭および記述によるコミュニケーション方法の違い<br>・海外の研究者との効果的な交流方法<br>最終的に学生は神経科学に関する効果的な口述<br>発表に関する準備・発表ができるようになることを期待する。                                                                                                                                                                                                                                           | ボルドー大学にで開<br>講。<br>英語で授業。                  |
| OATGC43 | 神経回路                                    | 1        | 3.0  | 1          | 秋AB  | 応談    |       | 小金澤 禎史                                                                        | 中枢神経系における神経回路の基本的な機能について体系的な理解を涵養する。<br>目的:本コースを通して、学生は以下における神経回路の機能を解析し理解することを目的とする。<br>・細胞およびシナプスの機能<br>・正常および異常な可塑性<br>・個体発生                                                                                                                                                                                                                                                                                                                                                              | ボルドー大学にて開<br>講。<br>英語で授業。                  |

| 科目番号    | 科目名                                       | 授業<br>方法 | 単位数 | 標準履<br>修年次 | 実施学期 | 曜時限 | 教室    | 担当教員                 | 授業概要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 備考                             |
|---------|-------------------------------------------|----------|-----|------------|------|-----|-------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| OATGC44 | 認知神経科学                                    | 1        | 3.0 | 1          | 秋AB  | 応談  |       | 小金澤 禎史               | 認知と生物学との関係に関する理解を涵養する。<br>目的:本コースを通して、学生は以下について<br>認知神経科学を理解し、議論することを目的と<br>する。<br>・認知過程における分子および細胞変化の関連<br>性<br>・認知過程<br>・認知過程<br>・認知過程<br>・認知過程<br>・認知過程<br>・認知過程<br>・認知過程<br>・認知過程<br>・認知過程                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ボルド一大学にて開<br>講。<br>英語で授業。      |
| OATGC45 | 分子細胞神経生物学                                 | 1        | 3.0 | 1          | 秋AB  | 応談  |       | 小金澤 禎史               | 分子細胞神経生物学の体系的理解を涵養する。<br>目的:本コースを通して、以下について理解することを目的とする。<br>・細胞および細胞内における神経および脳機能<br>の解析と理解<br>・神経およびグリア細胞の機能解析における解<br>剖学的、遺伝学的、生理学的、薬理学的、生化<br>学的アプローチ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ボルドー大学にて開<br>講。<br>英語で授業。      |
| OATGC46 | Scientific Ethics                         | 1        | 1.0 | 1 • 2      | 春AB  | 水4  | 4F204 | マティス ブライ<br>アン ジェームズ | 倫理的行動を定義する科学および法的枠組みで一般的に認められている慣習について学習問題とそれらを適切に議論し解決する方法を習得する。そのため、授業では伝統的な講義を行う。さらに、グループに別れて議論を行い、その結果をホームワークとしてレポートにまとめる。(1)クラス紹介と倫理ディスカッション、(2)一般倫理、(3)一般科学的問題パートII、(4)一般科学的問題パートII、(7)科学的不正行為の事例研究その1、(8)科学的不正行為の事例研究その1、(8)科学的不正行為の事例研究その1、(8)全トピックの包括的なレビューその1、(10)全トピックの包括的なレビューその2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02RE002, 0BTX021と同一。<br>英語で授業。 |
| OATGC47 | Scientific Critical<br>Reading & Analysis | 1        | 1.0 | 1 · 2      | 春AB  | 木6  | 4F204 | マティス ブライアン ジェームズ     | 学術ジャーナルや専門書などの科学的な、文献の構造や作法について講義を行うとともに、文文献の内容について学生が互いに発表、観察文献を十分に理解するための時かなとともに、学生がこれを他者に分かりやするととを持ったもとを表します。 である。 おりで整理するためのもは次のとおりで整理するをはなのとおりで整理するがである。 とないである。 おりでを担当するになりである。 おりでを担当するになりである。 おりでを担当するになりを指している。 では、 一シャーシャー・ 一シャー・ 一シャー・ 一シャー・ 一シャー・ 一シャー・ 一シャー・ 一シャー・ 一ジンテ、、 まなりをに、 いっとに、 いっに、 いっに、 いっに、 いっに、 いっに、 いっに、 いっに、 いっ | 英語で授業。                         |

## 専門科目(フロンティア医科学関連科目)

| 科  | -目番号      | 科目名             | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期 | 曜時限  | 教室     | 担当教員                            | 授業概要                                                                                                                                             | 備考 |
|----|-----------|-----------------|----------|------|------------|------|------|--------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
| OA | I III-AXI | 機能形態学特論・同実<br>習 | 1        | 2. 0 | 1          | 春AB  | 火4-6 | 41 303 | 武井 陽介,佐々木<br>哲也,首藤 文洋,<br>濱田 理人 | 組織学の研究で用いられる基本的な研究手法について、原理と応用を理解する。特に、電子顕微鏡、in situハイブリダイゼーション法、免疫組織化学、神経路トレーシング法を学び、実習では組織の電子顕微鏡観察の実際を学ぶ。目標:形態学の基本的な研究手法について、理論に基づいて論じることができる。 |    |

| 科目番号    | 科目名      | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期 | 曜時限   | 教室    | 担当教員                                                                                          | 授業概要                                                                                                                                                                                      | 備考                    |
|---------|----------|----------|------|------------|------|-------|-------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| OATGE49 | 腫瘍学      | 1        | 2.0  | 1          | 秋AB  | 月・火4  | 4F204 | 野賢櫻幸千司, 始本, 大光保藤夫, 幸齡, 大光保藤夫, 幸高, 上雄, 宗郎島, 允太, 上雄, 崇船, 一十二, 一十二, 一十二, 一十二, 一十二, 一十二, 一十二, 一十二 | 悪性腫瘍の定義、病因、進展のメカニズムを学ぶ。<br>目標:悪性腫瘍の診断、治療の基盤も理解する。腫瘍の病因、悪性化の機構、および診断治療の基本を説明できる。                                                                                                           | 英語で授業。                |
| OATGE51 | 薬理学      | 1        | 1.0  | 1          | 春AB  | 月5    | 4F204 | 桝 正幸, 櫻井 武,<br>大林 典彦, 塩見<br>健輔, 桝 和子, 岡<br>田 拓也, 船越 祐<br>司                                    | 目標:薬理学の概念と最新の薬理学的研究、創薬技術を理解し説明できる。薬理学に関する基礎的知識を学修する機会を提供している。 (1) 薬理学の基本概念を述べることができる。 (2) 受容体とシグナル伝達について説明できる。 (3) 薬物の生体への作用について説明できる。 (4) 薬理学分野の最先端研究に触れ、その内容を理解し説明できる。 (5) 創薬の方法を説明できる。 | 02RE611と同一。<br>英語で授業。 |
| 0ATGE52 | ゲノム医学概論  | 1        | 2. 0 | 1 · 2      | 秋AB  | 火5, 6 | 4F204 | 野口時, 土 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大                                                    | ゲノム科学の基本原理とその医学への応用方法を修得する。<br>目標:ゲノム解析研究、診断・治療におけるゲノム診断とゲノム情報の臨床応用について、方法と課題を論じることができる。                                                                                                  | 英語で授業。                |
| OATGE53 | 医工学概論    | 1        | 1.0  | 1          | 春AB  | 火2    | 4F204 | 三好 浩稔, 長崎幸夫, 大川 敬子                                                                            | 疾病の診断と治療に広く用いられている医用電子機器、生体情報計測装置、治療用医用機器及び人工臓器の基礎理論と臨床応用の実際を学ぶ。また、血液循環系を対象として、力学的特性やバイオメカニクスの概念についても学習する。<br>目標:医療機器のしくみと課題、あるいは生体の特性について、医工学的な観点から論じることができる。                            | 日本語が理解できる学生に限る。       |
| OATGE54 | 放射線医科学特論 | 1        | 2. 0 | 1          | 秋AB  | 金1, 2 | 4F204 | 榮 武二, 磯辺 智範, 櫻井 英幸, 熊田 博明, 武居 秀行, 森 祐太郎                                                       | 放射線医学を基礎および臨床の両面から理解する。基礎は放射線物理工学と生物学に関し、臨床は画像診断学、放射線腫瘍学および核医学を含め、その現状を学習する。また、放射線管理についても習得する。<br>目標:放射線医学の基礎的事項・臨床応用をさまざまな観点から論じることができる。                                                 |                       |
| OATGE55 | 精神医学概論   | 1        | 1.0  | 1          | 秋AB  | 月3    | 4F204 | 新井 哲明, 佐藤<br>晋爾, 太刀川 弘<br>和, 太田 深秀, 高<br>橋 晶. 根本 清貴,<br>白鳥 裕貴                                 | 精神医学の実践は心を病む人を対象とする。その人の持つ精神医学的問題点を明らかにし、対応策を講じる。考え得る治療法の中から、その人の価値観と決定に従って最善のものを実行する。患者さんの思いと精神医学の果たすべき社会的役割を認識しつつ、一般的な精神疾患と神経科学に関する基本的な知識を身に付ける。                                        |                       |
| OATGE56 | 臨床老年病学   | 1        | 1.0  | 1          | 秋AB  | 金7    | 4F204 | 柳 久子,玉岡 晃,石井 亜紀子,松井裕史                                                                         | 老年者に多発する疾患について学び、老年病の<br>特異性を理解する。また、高齢社会を迎えた現<br>在、老年病対策の現状を分析し、今後を展望す<br>る。<br>目標:臨床老年病学の今日的課題をさまざまな<br>観点から論じることができる。                                                                  |                       |
| OATGE57 | 臨床薬剤学特論  | 1        | 1.0  | 1          | 秋AB  | 水6    | 4F204 | 本間 真人, 籏野健太郎, 土岐 浩介                                                                           | 薬物の効果や副作用には薬物の体内動態(体液・組織中濃度)が関与している。薬物の効果や副作用を理解するために1)薬物体内動態解析法、2)薬物動態を制御する特殊製剤、3)薬物動態に影響する代謝酵素や輸送蛋白の基礎知識と研究方法について学ぶ。<br>目標:薬物の効果や副作用について薬物動態を用いて解析し論じることができる。                           |                       |

| 科目番号    | 科目名                          | 授業<br>方法 | 単位数 | 標準履<br>修年次 | 実施学期 | 曜時限  | 教室    | 担当教員                                                                                                                                                    | 授業概要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 備考                             |
|---------|------------------------------|----------|-----|------------|------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| OATGE58 | 橋渡し研究概論                      | 1        | 2.0 | 1          | 秋AB  | 月6.7 | 4F204 | 橋本 幸一, 松阪<br>諭, 村谷 匡史, 鶴<br>英夫, 小島, 崇<br>宏, 町野 毅, 山田<br>武史                                                                                              | 医薬品や医療機器(治療器具、医用材料、治療・診断装置など)等の開発・応用において科学技術的シーズが如何にして臨床現場におけるニーズに結びつけられているかの全体プロセスを理解する。併せてそのプロセスの効率的な運用のために必須な各種の先進的技術、経済的要因、各種規制・手続き、人材等について理解する。1. 医薬品や治療器具、医用材料の開発や治療・診断装置の開発プロセスについて説明できる。2. 安全性・有効性の科学的実証研究(前臨床研究、臨床研究(治験))の重要性につき説明できる。3. 医薬品・医療機器開発の置かれている社会的状況、開発に関わる関係者・関係機関につき説明できる。4. 医薬品や治療器具、医用材料の開発や治療・診断装置の開発プロセスにおいて用いられる技術、知的財産確保の重要性について説明できる。                                                                                                                      | 02RE305と同一。<br>英語で授業。          |
| OATGE61 | ヒトの感染と免疫                     | 1        | 2.0 | 1          | 春AB  | 月3,4 | 4F204 | 渋谷, 森川<br>一也, 川口 史, Ho Kiong, 松坪<br>功, 田原人, 小 宰<br>が、治倉<br>を、<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・ | 感染症を惹起する病原微生物、特に病原細菌とウイルスの生物学的な特性、宿主免疫システ互ム、および病原微生物と宿主の免疫との相本的知識をもとに、ヒトの感染症の制御法を開発する。 1. 細菌の生物学的特性を説明できる。 2. 病原細菌および非病原細菌の特徴を説明できる。 3. 細菌の病原性の機構と制御を説明できる。 4. 感染症の制御、薬剤耐性などについて説明できる。 5. 寄生虫や真菌の複製機構を説明できる。 6. 寄生虫や真菌の病原性について分子レベルで説明できる。 7. ウイルスゲノムの複製の分子機構について説明できる。 8. ウイルスゲノムの複製の分子機構について説明できる。 9. ウイルスエニ学の概要を説明できる。 10. ウイルスエニ学の概要を説明できる。 11. 免疫システムを構成する細胞や組織を説明できる。 12. 抗体の構造と機能を説明できる。 13. リンパ球の分化と抗原受容体の遺伝子再構成を説明できる。 14. 自然免疫について説明できる。 15. 後身疾病の病理を説明できる。 16. 免疫病の病理を説明できる。 | 02RE601, 0BTX103と同一。<br>英語で授業。 |
| OATGE62 | Stem Cell Therapy            | 1        | 1.0 | 1          | 春AB  | 木3   | 4F204 | 大根田 修, 山下年晴                                                                                                                                             | 再生医療と幹細胞生物学の分野の論文を読み、<br>基礎知識と最先端の研究について学ぶ。さらに、論文の論点を抽出し他者と議論する能力を身に着ける。 1. オンライン検索システムを使い、主要学術雑誌から適切な論文を探すことができる。 2. 論文を理解してプレゼンテーション資料を作成し、限られた時間内で要約することができる。 3. 発表者の説明を理解して質問し、問題点について議論できる。 4. 関連分野における論文の重要性と位置づけを理解できる。                                                                                                                                                                                                                                                          | 02RE604と同一。<br>英語で授業。          |
| OATGE63 | 医薬品・医療機器レ<br>ギュラトリーサイエン<br>ス | 1        | 1.0 | 1          | 秋C   | 応談   |       | 橋本 幸一                                                                                                                                                   | 目標:医薬品、医療機器、再生医療製品等の医薬品医療機器等法による規制と承認審査について体系的に理解する。医薬品医療機器等法による医薬品等の規制、承認制度、安全対策について説明できる。 1. 日本の薬価制度について説明できる。 2. 医薬品副作用被害救済制度について説明できる。                                                                                                                                                                                                                                                                                                                                              | 02RE304と同一。                    |

| 科目番号    | 科目名             | 授業<br>方法 | 単位数  | 標準履<br>修年次 | 実施学期 | 曜時限   | 教室 | 担当教員                                      | 授業概要                                                                                                                                                                                                                                                                                                                                                         | 備考     |
|---------|-----------------|----------|------|------------|------|-------|----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| OATGE64 | 適正技術教育          | 1        | 3.0  | 1 - 2      | 通年   | 応談    |    | 入江 賢児                                     | 現地(途上国、国内過疎地域)のニーズ、文化、環境、人などを考慮したうえで、現地の人に必要とされる最善の技術を創出する。それにより、これからの社会で必要とされる問題解決力、現場対応力、起業力を身につける。 1. 適正技術の科目の履修に必要な基礎知識(適正技術教育、途上国や過疎地域)のニーズ、文化、環境、人などを考慮したうえで、現地の人に必要とされる最善の技術を創出する。 2. 現地(途上国、国内過疎地域)のニーズ、文化、環境、人などを考慮したうえで、現地の人に必要とされる最善の技術を創出する。授業項目: (1) 適正技術教育入門の受講 (2) 現地(途上国、国内過疎地域)へのフィールドトリップ (3) 途上国向けの製品開発と討議、最終報告会での発表 (4) (1)~(3) のレポートの提出 | 英語で授業。 |
| OATGE65 | 医学物理学詳論IA       | 1        | 2.0  | 1          | 春AB  | 水7.8  |    | 榮 武二, 磯辺 智範, 熊田 博明, 武居 秀行, 森 祐太郎          | 医学物理分野において、基礎となる放射線物理学について教授する。<br>目標:放射線の物理特性を理解し、医学・工学<br>双方の観点から幅広い知識と技術を臨床応用できる。                                                                                                                                                                                                                                                                         |        |
| OATGE66 | 医学物理学詳論IB       | 1        | 2. 0 | 1          | 秋AB  | 金5, 6 |    | 榮 武二, 磯辺 智<br>範, 武居 秀行, 森<br>祐太郎          | 医学物理分野において、基礎となる放射線計測学について教授する。<br>目標:放射線計測の原理を理解し、目的に応じた線量計の選択および取扱いができる。                                                                                                                                                                                                                                                                                   |        |
| OATGE67 | 医学物理学詳論II       | 1        | 2. 0 | 1          | 秋AB  | 金7,8  |    | 榮 武二, 磯辺 智範, 熊田 博明, 武居 秀行, 森 祐太郎          | 医学物理分野の治療領域における臨床応用の一部として、放射線治療物理学について教授する。<br>目標: 1. 放射線治療技術全般について正しく説明できる。 2. 放射線治療関連装置・機器の精度管理を行うことができる。 3. リスクを最小限にした放射線治療の計画を立てることができる。                                                                                                                                                                                                                 |        |
| OATGE68 | 医学物理学詳論ⅡⅠ       | 1        | 2.0  | 1          | 秋C   | 応談    |    | 榮 武二, 磯辺 智範, 熊田 博明, 武居 秀行, 森 祐太郎          | 医学物理分野の診断領域における臨床応用の一部として、放射線診断および核医学に関する物理学および診断学について教授する。目標: 1. 各種画像検査機器の原理について正しく説明できる。 2. 各種画像検査におけるイメージング手法および解析法について説明できる。 3. 核医学における放射性医薬品の性質を理解し、安全に取扱うことができる。 4. 各種画像診断装置の特性を理解し、疾病ごとに適切なモダリティを選択することができる。                                                                                                                                          |        |
| OATGE69 | 医学物理学詳論IV       | 1        | 2. 0 | 1          | 秋C   | 応談    |    | 榮 武二, 磯辺 智範, 熊田 博明, 武居 秀行                 | 医学物理分野の情報工学における臨床応用の一部として、情報処理や画像工学について教授する。<br>目標:<br>1. コンピュータシステムに必要な各種理論を説明できる。<br>2. 医療情報システムについて説明できる。<br>3. 運用性と安全性を考慮し、理想的な医療情報システムの実践プランを提案できる。                                                                                                                                                                                                     |        |
| OATGE71 | 医学物理学詳論V        | 1        | 2.0  | 1          | 秋C   | 応談    |    | 榮 武二, 磯辺 智範, 奥村 敏之, 櫻井 英幸, 武居<br>行, 森 祐太郎 | 医学物理学の応用として、放射線生物学と放射線腫瘍学について教授する。<br>目標:<br>1. 放射線による細胞の損傷、回復、さらに放射線と化学療法剤や温熱療法との相互作用、増感効と化学療法剤や温熱療法との相互作用、増感効と、腫瘍の成り立ちとメカニズムについて説明できる。<br>3. 各領域の放射線治療法の概要を説明できる。                                                                                                                                                                                          |        |
| OATGE72 | 医学物理問題解決型演<br>習 | 2        | 1.0  | 1          | 春ABC | 木7,8  |    | 榮 武二, 磯辺 智範, 熊田 博明, 奥村 敏之, 武居行, 森 祐太郎     | 医学物理学は物理工学の知識と成果を医学に応用する分野である。この分野に携わる研究者は、何か問題が生じたときに解決手段を見いだす能力を持たなければならない。本演習では、幾つかの課題を解くことで、医学物理分野における種々の問題を解決する能力を養う。目標:臨床の医学物理分野における種々の問題を解決できる。                                                                                                                                                                                                       |        |

| 科目番号    | 科目名             | 授業<br>方法 | 単位数 | 標準履<br>修年次 | 実施学期 | 曜時限          | 教室 | 担当教員                   | 授業概要                                                                                                                                                      | 備考                                 |
|---------|-----------------|----------|-----|------------|------|--------------|----|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| OATGE73 | 医学物理問題解決型実<br>習 | 3        | 1.0 | 1          | 秋ABC | 木7,8         |    | 榮 武二,磯辺 智<br>範,熊田 博明,奥 | 医学物理学は物理工学の知識と成果を医学に応用する分野である。この分野に携わる研究者は、何か問題が生じたときに解決手段を見いだす能力を持たなければならない。臨床現場で生じる問題を想定したテーマの実習により、問題解決型の実用的な知識と技術を養う。<br>目標:臨床の医学物理分野における種々の問題を解決できる。 |                                    |
| 0AVC002 | 環境医学概論          | 1        | 2.0 | 1          | 秋AB  | 集中           |    | 安孫子 ユミ,秋山 雅博 中山 祥嗣     | む社会医学に関する専門知識を学習する。具体<br>的には、分子細胞生物学的な理解という側面                                                                                                             | O1ER102, OAND379と同一。               |
| 0BTX114 | 創薬フロンティア科学      | 1        | 1.0 | 1          | 秋AB  | <b>7</b> K.5 |    | 高橋 智                   | 連携協定に基づき実施する講義である。創薬の                                                                                                                                     | 02RA180, 02RE612と同<br>一。<br>英語で授業。 |